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We consider pursuit-evasion differential games between inertial players (a pursuer and an
evader) whose controls are subject to integral constraints. The pursuer is believed to have
captured the evader when their positions coincide. The key method used to provide a win for
the pursuer in the pursuit differential game is the parallel pursuit strategy (in brief, the Π-
strategy). We obtain sufficient conditions for the solvability of pursuit-evasion problems.
Furthermore, we investigate Isaacs’ “life-line” game in favor of the pursuer in the case
of the identical initial velocities of the players. Here, the main lemma characterizing its
monotonicity property provides an analytical formula for the players’ meeting domain. This
paper extends and continues the works of R. Isaacs, L. A. Petrosyan, B. N. Pshenichnyi,
N. Yu. Satimov, the authors of this article, and other researchers.
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1. Introduction. Differential games constitute a special class of problems for conflict-
controlled dynamic systems described by differential equations. In 1965, the concept of
“differential game” was first introduced by American mathematician R. Isaacs [1]. From
then onward, L. S. Pontryagin [2], N. N. Krasovskii [3], L. A. Petrosyan [4–6], A. Fried-
man [7], N. N. Krasovskii and A. I. Subbotin [8], L. D. Berkovitz [9], B. N. Pshenichnyi [10],
A. I. Subbotin [11], A. A. Chikrii [12], J. Lewin [13], N. Yu. Satimov [14], and many other
researchers developed the ideas of Isaacs and contributed to the development of differential
game theory.
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Differential games have a distinctive interest in pursuit-evasion problems due to seve-
ral specific features, such as the complexity of problem statements and their applications
to practice (see e.g. [1–14]). Notably, Isaacs applied the method of characteristics to the
Hamilton — Jacobi equation to solve differential games. This method demands strict condi-
tions on the data of a game and can only be justified in special cases. Therefore, examining
concrete examples in the theory of differential games is particularly important. One of such
examples is known as Isaacs’ “life-line” game with simple player dynamics. R. Isaacs stu-
died this game when the life-line subset is a half plane [1, Problem 9.5.1]. At a later time,
L. A. Petrosyan [4, 5] considered the “life-line” game in a more general context using an
exclusive strategy referred to as a parallel pursuit strategy (or, briefly the Π-strategy).
Using the support function of the set-valued map, A. Azamov solved the “life-line” game
analytically for the case of multiple pursuers and one evader when the players have diffe-
rent speeds [15]. Afterwards, applying the Π-strategy in pursuit problems and development
of the “life-line” game can be traced in [12, 16–19].

Pursuit-evasion problems in the differential game with integral constraints on players’
controls have been considered in several works [14, 16, 18, 20]. Studying the problems
associated with inertial players is more intriguing and more complex than simple pursuit
differential games. Furthermore, there are many applications of differential games, for
example, in motions of ships, bathyscaphes, missiles, drones, and others [2, 8, 14, 21–23].
B. T. Samatov et al. [23] studied pursuit-evasion differential games with inertial players
under geometric constraints on controls, and they also looked at Isaacs’ “life-line” problem
from the pursuer’s point of view.

In this paper, we analyze pursuit-evasion problems in a differential game with inertial
players (a pursuer and an evader) whose controls are subject to integral constraints. The
main tool used to provide winning for the pursuer in the pursuit problems and in the “life-
line” problem (for the case of equal initial velocities of the players) is the Π-strategy. Using
this strategy, necessary and sufficient conditions for completing the pursuit problems are
obtained, and a set of meeting points for the players is constructed. When solving the
“life-line” problem for the pursuer, the main lemma regarding the monotone decrease (by
inclusion) of the players’ reachability set over time is proved. Furthermore, illustrative
example are given for the meeting domain of the players.

2. Statement of the problems. We study a differential game with two players,
called the pursuer and the evader, in space R

n.
Let a parameter x ∈ Rn (respectively, a parameter y ∈ Rn) designate a position of the

pursuer (the evader). Then, assume the pursuer begins its motion from an initial position
x0 and with an initial velocity x1 in accordance with the dynamics

ẍ = u, x(0) = x0, ẋ(0) = x1, (1)

where the parameter u ∈ R
n is the acceleration vector that serves as the control of the

pursuer. Ultimately, the temporal change of the vector u must be a measurable function
u(·) : R+ → Rn.

Definition 1. A measurable function u(·) = (u(t), t > 0) is called an admissible
control for the pursuer, if the integral constraint

t∫

0

(t− s)|u(s)|2ds 6 ρ20, ρ0 > 0, t > 0, (2)

holds.
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From now on, the class consisting of all admissible controls u(·) for the pursuer will
be denoted by UI .

Similar to the above, the evader begins its motion from an initial position y0 and with
an initial velocity y1 in accord to the dynamics

ÿ = v, y(0) = y0, ẏ(0) = y1, (3)

here the parameter v ∈ Rn is the acceleration vector that serves as the control of the
evader. Similarly, the temporal change of the vector v must be a measurable function
v(·) : R+ → Rn.

Definition 2. A measurable function v(·) = (v(t), t > 0) is called an admissible
control for the evader, if the integral constraint

t∫

0

(t− s)|v(s)|2ds 6 σ2
0 , σ0 > 0, t > 0, (4)

holds.
Here and subsequently, the class consisting of all admissible controls v(·) for the evader

will be denoted by VI .
The number ρ20 (respectively, σ2

0) embodies the maximum quantity of a resource of
the pursuer (respectively, the evader).

For the sake of simplifying the calculations, we will introduce the following reductions:
z = x− y, z0 = x0 − y0, z1 = x1 − y1. Then systems (1) and (3) reduce to the form

z̈ = u− v, z(0) = z0, ż(0) = z1. (5)

Summing up from the new denotation introduced above, we can express the main
goals of the players, that is, the primary objective of the pursuer is to catch the evader,
i.e., to specifically achieve the equality z(t) = 0 from the given initial values z0 and z1
in the shortest time t. For the evader, the main goal is to maintain the relation z(t) 6= 0
for each t ∈ [0,+∞), and if this is impossible, then put back the occurrence of capture.
Additionally, we suppose that z0 6= 0 at the start of the game.

Definition 3. A map u : VI → UI is said to be a strategy of the pursuer, if the
following conditions are fulfilled:

a) (Admissibility) for each control v(·) ∈ VI , the inclusion u(v(·)) ∈ UI is satisfied;
b) (Volterranianity) for every v1(·), v2(·) ∈ VI and t, t > 0, the equality v1(s) = v2(s)

a.e. on [0, t] implies u1(s) = u2(s) a.e. on [0, t] with ui(·) = u(vi(·)), i = 1, 2.
Definition 4. We call a strategy u(v(·)) the parallel convergence strategy (Π-stra-

tegy), if for arbitrary v(·) ∈ VI the solution z(t) of the initial value problem

z̈ = u(v(t)) − v(t), z(0) = z0, ż(0) = z1,

can be expressed as

z(t) = z0Γ(t, v(·)), Γ(0, v(·)) = 1, t > 0,

where Γ(t, v(·)) is a scalar function.
Obviously, Γ(t, v(·)) also satisfies the Volterra property in Definition 3.
Definition 5. It is said that the pursuer wins by using the Π-strategy on a finite time

interval [0, T ], if for any v(·) ∈ VI ,
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a) z(θ) = 0 at some instant θ ∈ [0, T ];
b) ũ(·) ∈ UI , where

ũ(t) =

{
u(v(t)), if 0 6 t 6 θ,

0, if t > θ.

The number T is called a guaranteed capture time in the pursuit problem.
This paper is dedicated to investigating the following games where the controls u(·)

and v(·) of the players are subject to the integral constraints:
Game 1. Solve pursuit-evasion problems in the differential game (1)–(4) for the case

of linear dependence of the vectors, which are the difference in the initial states and the
difference in the initial velocities of the players.

Game 2. Solve the differential game with “life-line” in the case of the identical initial
velocities of the players.

3. Pursuit-evasion problems in Game 1. In this section, we consider the pursuit-
evasion problems in the differential game (1)–(4) for the case where the vectors z0 and z1
are collinear, which means there is a finite number k such that

z1 = kz0, k ∈ R \ {0}. (6)

Here we assume that k is not equal to zero, because in the next section we will consider
the pursuit problem for the case of k = 0. As a result of (6), when choosing admissible
controls u(·) ∈ UI and v(·) ∈ VI , the solution z(t) of the initial value problem (5) will
have form

z(t) = z0 + kz0t+

t∫

0

(t− s)(u(s)− v(s))ds. (7)

3.1. Implementing a Π-strategy to the pursuit problem. Next, we will define
the Π-strategy based on the existing works [5, 6, 10, 15, 16] and take a sufficient condition
for the occurrence of pursuit in the case (6). To construct the Π-strategy, suppose that
the pursuer is aware of the initial date z0, ρ0, σ0, the finite number k, and the value v(t)
at the current time t.

Let’s introduce the following new constants for simplicity of our calculation:

δ =
ρ20 − σ2

0

|z0|
, µ =

ρ0 − σ0√
2|z0|

, a = −2kδ|z0|(µ− k), b = 2δ|z0|(µ− k)(2µ− k),

and let’s set

γk(v) =

{
γ∗(v), if ρ0 > σ0 and k < 0,

γ∗(v), if ρ0 > σ0 and 0 < k < µ,
(8)

where

γ∗(v) =
δ

2
+ 〈v, ξ0〉+

√(
δ

2
+ 〈v, ξ0〉

)2

+ a, (9)

γ∗(v) = − δ
2
+ 〈v, ξ0〉+

√(
− δ
2
+ 〈v, ξ0〉

)2

+ b, (10)

and ξ0 = z0/|z0|, 〈v, ξ0〉 is the inner product of the vectors v and ξ0 in Rn.
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Definition 6. The control function

uk(v) = v − γk(v)ξ0, (11)

is called the Π-strategy of the pursuer in the pursuit problem of Game 1.
In general, the scalar function γk(v) is termed the resolving function in the pursuit

problem. Now, we present the following important property for strategy (11) and resolving
function (8).

Lemma 1. Let ρ0 > σ0 and k ∈ (−∞, µ) be satisfied. Then the function γk(v) is
well-defined, non-negative for any control v(·) ∈ VI and, what’s more, the equality

|uk(v)|2 =

{
|v|2 + δγk(v) + a, if ρ0 > σ0 and k < 0,

|v|2 − δγk(v) + b, if ρ0 > σ0 and 0 < k < µ,
(12)

is met.
Let

Γk(t) =

{
Γ∗(t), if ρ0 > σ0 and k < 0,

Γ∗(t), if ρ0 > σ0 and 0 < k < µ,

where

Γ∗(t) = 1 + kt− t

|z0|


δ
4
t− σ0√

2
+

√(
δ

4
t− σ0√

2

)2

+
a

4
t2




and

Γ∗(t) = 1 + kt+
t

|z0|


δ
4
t+

σ0√
2
−
√(

δ

4
t+

σ0√
2

)2

+
b

4
t2


 .

Proposition 1. If ρ0 > σ0 and k ∈ (−∞, µ), then there exists at least positive root
of the equation

Γk(t) = 0,

and we denote by Tk the smallest positive root, where Tk = 1/(µ− k).
Consider the scalar function

Γ̄k(t, v(·)) = 1 + kt− 1

|z0|

t∫

0

(t− s)γk(v(s))ds (13)

with respect to t, t > 0. Usually, the scalar function Γ̄k(t, v(·)) is called the convergence
function of the players in the pursuit problem for any v(·) ∈ VI .

Lemma 2. Let Proposition 1 be satisfied. Then the convergence function (13) is
bounded on time interval [0, Tk] as follows:

0 < Γ̄k(t, v(·)) 6 Γk(t).

P r o o f. Clearly, Γ̄k(0, v(·)) = 1.
a). First of all, suppose that ρ0 > σ0 and k < 0, then the convergence function (13)

is monotonically decreasing in t, t > 0. From the form (9), it is not difficult to show that
γ∗(v) is increasing with 〈v, ξ0〉. For this convergence function, we may write estimates

Γ̄k(t, v(·)) 6 1 + kt− 1

|z0|
min

v(·)∈VI

t∫

0

(t− s)γ∗(v(s))ds 6
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6 1 + kt− 1

|z0|

t∫

0

(t− s)



δ
2
− |v(s)| +

√(
δ

2
− |v(s)|

)2

+ a



 ds,

or, in the short form

Γ̄k(t, v(·)) 6 1 + kt− 1

|z0|
min

v(·)∈VI

t∫

0

ϕ(s)ψ
(
̺(s)

)
ds, (14)

where ψ
(
̺(s)

)
= ̺(s) +

√
̺2(s) + a, ̺(s) = δ/2 − |v(s)| and ϕ(s) = t − s (s ∈ [0, t]).

Here, ϕ(s) is a non-negative and continuous function. Thus, by the convexity of ψ
(
̺(s)

)
,

we can use the Jensen inequality for the integral in (14), i.e.,

t∫

0

ϕ(s)ψ(̺(s))ds >

t∫

0

ϕ(s)dsψ




t∫
0

ϕ(s)̺(s)ds

t∫
0

ϕ(s)ds


 . (15)

As a consequence of (15), the right side of (14) takes the form

Γ̄k(t, v(·)) 6 1 + kt− 1

|z0|
f(t, ω), (16)

here f(t, ω) = ω+
√
ω2 + t4a/4 and ω = δt2/4−

∫ t
0 (t−s)|v(s)|ds. It is clear that f(t, ω) is

a monotonically increasing function with respect to ω. Considering the Cauchy — Schwartz
inequality and taking account of the constraint (4)

t∫

0

(t− s)|v(s)|ds 6




t∫

0

(t− s)ds




1/2


t∫

0

(t− s)|v(s)|2ds




1/2

6
σ0√
2
t (17)

for ω, we can estimate the function f(t, ω) in the form

f(t, ω) > ωmin +

√
ω2
min +

a

4
t4 =

δ

4
t2 − σ0√

2
t+

√(
δ

4
t2 − σ0√

2
t

)2

+
a

4
t4.

From an estimation of the function f(t, ω), we obtain the results for the right side of (16):

Γ̄k(t, v(·)) 6 1 + kt− t

|z0|


δ
4
t− σ0√

2
+

√(
δ

4
t− σ0√

2

)2

+
a

4
t2


 ,

or
Γ̄k(t, v(·)) 6 Γ∗(t). (18)

b). Let ρ0 > σ0 and 0 < k < µ. Then the convergence function (13) increases up to
the time η, where

k|z0| =
η∫

0

γ∗(v(s))ds
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and decreases for all t > η. Due to the view of function (10), it is clear to check that
function γ∗(v) is monotonically increasing with 〈v, ξ0〉. Consequently, for the convergence
function (13), we may write estimates

Γ̄k(t, v(·)) 6 1 + kt− 1

|z0|
min

v(·)∈VI

t∫

0

(t− s)γ∗(v(s))ds 6

6 1 + kt− 1

|z0|

t∫

0

(t− s)


− δ

2
− |v(s)|+

√(
− δ
2
− |v(s)|

)2

+ b


 ds,

or

Γ̄k(t, v(·)) 6 1 + kt+
1

|z0|

t∫

0

(t− s)


 δ

2
+ |v(s)| −

√(
δ

2
+ |v(s)|

)2

+ b


 ds. (19)

By introducing the new notation, which is analogous to that in (14), for the functions
within the integral in (19) and examining these functions, it is not difficult to see that the
Jensen inequality (15) and the Cauchy — Schwartz’s inequality (17) also hold in this case.
Therefore, we find the following results:

Γ̄k(t, v(·)) 6 1 + kt+
t

|z0|


δ
4
t+

σ0√
2
−
√(

δ

4
t+

σ0√
2

)2

+
b

4
t2


 ,

or
Γ̄k(t, v(·)) 6 Γ∗(t). (20)

Based on Proposition 1, the right-hand sides of inequalities (18) and (20) vanish at
the time t = Tk. Hence, we can express

0 6 Γ̄k(t, v(·)) 6 Γk(t)

on the time interval [0, Tk] and this completes the proof. �

Theorem 1. Let Lemma 1 be met. Then the pursuer wins by employing the Π-stra-
tegy (11) during the time interval [0, Tk], where Tk is defined by Proposition 1.

P r o o f. Let the evader choose an arbitrary control v(·), v(·) ∈ VI , and let the
pursuer employ Π-strategy (11). Then, by virtue of (7), we obtain the function

z(t) = z0 + kz0t−
t∫

0

(t− s)γk(v(s))ξ0ds,

or we can write it down as result

z(t) = z0Γ̄k(t, v(·)). (21)

Taking into account Lemma 2, Γ̄k(t, v(·)) 6 Γk(t) and Γk(Tk) = 0, there exists time θ ∈
[0, Tk] depending on v(·) ∈ VI such that Γ̄k(θ, v(·)) = 0 for all ρ0 > σ0 and k ∈ (−∞, µ).
Thus, by virtue of (21) the desired result z(θ) = 0, i.e., x(θ) = y(θ) is obtained.
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It remains only to check that Π-strategy (11) is admissible for each t ∈ [0, θ]. By (13)
Γ̄k(θ, v(·)) = 0 implies that

θ∫

0

(θ − s)γk(v(s))ds = |z0|(1 + kθ). (22)

Due to (4), (12), (22) and assuming θ ∈ [0, Tk], for ρ0 > σ0 and k < 0, we can write

θ∫

0

(θ − s)|uk(v(s))|2ds =
θ∫

0

(θ − s)|v(s)|2ds+ δ

θ∫

0

(θ − s)γk(v(s))ds + a

θ∫

0

(θ − s)ds 6

6 σ2
0 + δ|z0|(1 + kθ)− θ2

Tk
kδ|z0| 6 ρ20.

In the same manner, for ρ0 > σ0 and 0 < k < µ, we can write

θ∫

0

(θ − s)|uk(v(s))|2ds =
θ∫

0

(θ − s)|v(s)|2ds− δ

θ∫

0

(θ − s)γk(v(s))ds + b

θ∫

0

(θ − s)ds 6

6 σ2
0 − δ|z0|(1 + kθ) +

θ2δ|z0|
Tk

(
k +

2

Tk

)
6 2σ2

0 − ρ20 + 2δ|z0| = ρ20.

Thus, strategy (11) is admissible. �

3.2. Evasion problem. In this subsection, the evasion problem will be considered.
To address this problem, it is necessary to introduce the concept of the evader’s strategy.
In this case, as with the pursuer’s strategy, it cannot be defined as a map UI → VI that
satisfies the Volterra property, as this leads to an encounter with a vicious circle. If the
control vector of the evader satisfy geometric constraints, its strategy can be chosen in
the form of a constant vector as games of considering type [16, 18]. However, in the case
of integral constraints being considered in our work, the constant strategy is not viable.
To overcome this obstacle, we use L. A. Petrosyan’s concept of an information-delayed
strategy with the appropriate modification (see [5, p. 169]). In this context, we choose
a simpler approach by constructing a concrete strategy for the evader. This strategy is
defined so that, at each current time t, the pursuer’s control values are accepted with
a delay of the amount τ , where τ is a sufficiently small positive number, that is, vicious
circle won’t occur. For this purpose, we take the function ṽ(u) = −|u|ξ0 (ξ0 = z0/|z0|) as
the evader’s strategy. Now, let the pursuer select any optional control u(·) ∈ UI . Then the
function that acts as described below

vτ (t) =

{
0, if 0 6 t < τ ,

ṽ[u(t− τ)], if t > τ ,
(23)

is determined.
It can be said that the evader’s strategy uses only the values of the control u(·) of the

pursuer in the interval [0, t − τ ] for each current t, t > τ . Unlike in [5], in our case, the
strategy operates continuously, not over the intervals [0, τ), [τ, 2τ), [2τ, 3τ). Obviously, if
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the initial values are given z0, z1, then the corresponding trajectory z(t) is to be defined
by the formulas

z(t) = z0 + kz0t+

t∫

0

(t− s)u(s)ds, if 0 6 t < τ , (24)

z(t) = z0 + kz0t+

t∫

0

(t− s)u(s)ds−
t∫

τ

(t− s)ṽ[u(s− τ)]ds, if t > τ . (25)

Theorem 2. Let these conditions ρ0 6 σ0, 0 < τ <
√
2|z0|/ρ0 and k > ρ0/

√
2|z0| be

met. Then the evader wins by using the strategy (23) in the time interval [0,+∞).
P r o o f. Suppose that the pursuer begins its motion with a control u(·) ∈ UI , and

let the evader make use of the control (23). In view of (24), we have

|z(t)| >
∣∣z0(1 + kt)

∣∣ −
t∫

0

(t− s)|u(s)|ds. (26)

To commence, we will prove that evasion is feasible for every t ∈ [0, τ). The ensuing
calculations, derived from the Cauchy — Schwartz inequality, the integral constraint (2),
and the second condition of Theorem 2, support this

t∫

0

(t− s)|u(s)|ds 6

√√√√√
t∫

0

(t− s)ds

√√√√√
t∫

0

(t− s)|u(s)|2ds 6 tρ0√
2
6
τρ0√
2
< |z0|.

We can infer from this and from (26) that |z(t)| > |z0|kt > 0.
Next, we will now demonstrate the possibility of evasion throughout the time interval

[τ,+∞). In view of (25), we have formula

|z(t)| >
∣∣∣z0(1 + kt)−

t∫

τ

(t− s)ṽ[u(s− τ)]ds
∣∣∣−

t∫

0

(t− s)|u(s)|ds. (27)

By leveraging inequality (27), we can see that

|z(t)| > |z0|(1 + kt) +

t∫

τ

(t− s)|u(s− τ)|ds −
t∫

0

(t− s)|u(s)|ds =

= |z0|(1 + kt) +

t−τ∫

0

(t− s− τ)|u(s)|ds −
t−τ∫

0

(t− s)|u(s)|ds−
t∫

t−τ

(t− s)|u(s)|ds,

or in conclusion,

|z(t)| > |z0|(1 + kt)− τ

t−τ∫

0

|u(s)|ds−
t∫

t−τ

(t− s)|u(s)|ds. (28)
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Applying the Cauchy — Schwartz inequality to the integrals on the right-hand side of (28),
taking into consideration inequality (2), and, from the condition 0 < τ <

√
2|z0|/ρ0 we

yield the following relations:

t−τ∫

0

|u(s)|ds 6

√√√√√
t−τ∫

0

1

t− s
ds

√√√√√
t−τ∫

0

(t− s)|u(s)|2ds 6 ρ0

√
ln
t

τ
,

and
t∫

t−τ

(t− s)|u(s)|ds 6 τρ0√
2
< |z0|.

Consequently, inequality (28) assumes the form

|z(t)| > ρ0τ√
2

(√
2|z0|k
ρ0

· t
τ
−
√
ln
t2

τ2

)
. (29)

According to k > ρ0/
√
2|z0|, inequality (29) guarantees that |z(t)| > 0 for every t > τ .

To complete the proof, let’s make sure the admissibility of the strategy (23) in the
time interval [τ,+∞) (it is clear to see in the time interval [0, τ)). If u(·) ∈ UI is an
optional control of the pursuer, then according to the first condition of Theorem 2, it is
derived from (4) that

t∫

0

(t− s)|vτ (s)|2ds =
t∫

τ

(t− s)|u(s− τ)|2ds =
t−τ∫

0

(t− τ − s)|u(s)|2ds 6 ρ20 6 σ2
0 . �

4. The differential game with “life line” problem.
4.1. Pursuit problem in the case z1 = 0.
Definition 7. In the differential game (1)–(4), the function

u0(v) = v − γ0(v)ξ0 (30)

is called the Π-strategy of the pursuer for the case z1 = 0, where

γ0(v) = max{0, δ + 2〈v, ξ0〉}, ξ0 = z0/|z0|, δ = (ρ20 − σ2
0)/|z0|.

In line with the previous discussions in [18], let us consider the following assertion for the
strategy (30) and the resolving function γ0(v).

Lemma 3. If δ > 0 holds, then the function γ0(v) is well-defined and nonnegative for
any control v(·) ∈ VI , and, what’s more, the equality

|u0(v)|2 = |v|2 + δγ0(v), (31)

is met.
Suppose that the evader picks some admissible control v(·) ∈ VI , and in response,

the pursuer adopts the function u0(v(t)). By virtue of the equations (1) and (2), we can
determine the trajectories of both the pursuer and evader:

x(t) = x0 + x1t+

t∫

0

(t− s)u0(v(s))ds, (32)
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y(t) = y0 + y1t+

t∫

0

(t− s)v(s)ds, (33)

and their residual resources

ρ(t) = ρ20 −
t∫

0

(t− s)|u0(v(s))|2ds, ρ(0) = ρ20, (34)

σ(t) = σ2
0 −

t∫

0

(t− s)|v(s)|2ds, σ(0) = σ2
0 , (35)

respectively.
Let us examine the scalar function

Γ̄0(t, v(·)) = 1− 1

|z0|

t∫

0

(t− s)γ0(v(s))ds (36)

with respect to t, t > 0.
Let ρ0 > σ0. Then scalar function (36) is called the convergence function of the

players in the pursuit game for the case z1 = 0 and for any v(·) ∈ VI , this function is
monotonically decreasing in t, t > 0. We can express the subsequent approximations for
this convergence function:

Γ̄0(t, v(·)) 6 1− 1

|z0|
min

v(·)∈VI

t∫

0

(t− s)max {0, δ + 2〈v(s), ξ0〉} ds 6

6 1− 1

|z0|
max



0, δ

t∫

0

(t− s)ds− 2

t∫

0

(t− s)|v(s)|ds



 .

Applying the Cauchy — Schwartz inequality (17) to the integral in the last expression and
in light of constraint (4), we find that the function Γ̄0(t, v(·)) is bounded from above by
the function Γ0(t), i.e.,

Γ̄0(t, v(·)) 6 Γ0(t), (37)

here Γ0(t) = 1− 1/|z0|max
{
0, δt2/2−

√
2σ0t

}
.

Theorem 3. If ρ0 > σ0, then for the case z1 = 0, the pursuer wins by using Π-stra-
tegy (30) on the time interval [0, T0], where T0 =

√
2|z0|/(ρ0 − σ0).

P r o o f. We previously established that the trajectories (32), (33) are generated by
an arbitrary control v(·) ∈ VI of the evader and Π-strategy (30) of the pursuer, and thus,

because of (7), for the case z1 = 0
(
k = 0

)
, we find z(t) = z0 −

t∫
0

(t − s)γ0(v(s))ξ0ds,

alternatively, we can record it in the following format:

z(t) = z0Γ̄0(t, v(·)). (38)

Taking into account the inequality (37), it can be easily verified that Γ0(T0) = 0. So, we
find θ0 ∈ [0, T0] depending on v(·) ∈ VI such that Γ̄(θ0, v(·)) = 0. Hence, by virtue of (38)
the desired result z(θ0) = 0, i.e., x(θ0) = y(θ0) is obtained.
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To complete the proof, we must verify the admissibility of Π-strategy (30) for each
t ∈ [0, θ0]. From (31)

θ0∫

0

(θ0 − s)|u0(v(s))|2ds =
θ0∫

0

(θ0 − s)|v(s)|2ds+ δ

θ0∫

0

(θ0 − s)γ0(v(s))ds 6 σ2
0 + δ|z0| = ρ20.

�

For ρ0 > σ0, the pursuer applies Π-strategy (30). Then, for all t ∈ [0, θ0] and for the
functions (34), (35), by (31) we form

ρ(t)− σ(t) = ρ20 − σ2
0 − δ

t∫

0

(t− s)γ0(v(s))ds = δ|z0|Γ̄0(t, v(·)). (39)

4.2. A meeting domain of the players. The current subsection is devoted to
investigating the dynamics of the meeting domain of the players in the pursuit game for
the case z1 = 0 (x1 = y1) and the “life-line” game problem of R. Isaacs.

Let the quadruplets (x, y, ρ, σ) describe the current state of the game at some moment
in time t, where x 6= y. The set Ω

(
x, y, ρ, σ

)
is defined as the set of all points ω where the

pursuer moving from the position x and consuming the resource ρ should encounter the
evader moving from the position y and consuming the resource σ, i.e.

Ω
(
x, y, ρ, σ

)
=
{
ω :
∣∣ω − x

∣∣ >
√
ρ/σ

∣∣ω − y
∣∣
}
. (40)

For ρ 6= σ, the boundary of set (40) is Ωb (x, y, ρ, σ) =
{
ω : |ω − x| =

√
ρ/σ |ω − y|

}
,

which is known as Apollonius’ sphere. The center and radius of this sphere are

C(x, y, ρ, σ) = (ρy − σx)/(ρ − σ), R(x, y, ρ, σ) =
√
ρσ|x− y|/(ρ− σ).

We mentioned that for any control v(·) ∈ VI and for the Π-strategy (30), the triplets
(y0, y1, v(·)) and (x0, x1,u0(v(·))), u0(v(·)) ∈ UI generate the trajectories of the players
(32) and (33) while t ∈ [0, θ0], 0 6 θ0 6 T0, where θ0 is the encounter time of the players,
which the equality x(θ0) = y(θ0) holds. Accordingly, by means of (40), for each quadruplet
(x(t), y(t), ρ(t), σ(t)), t ∈ [0, θ0], we define the following multi-valued mapping:

Ω
(
x(t), y(t), ρ(t), σ(t)

)
=
{
ω :
∣∣ω − x(t)

∣∣ >
√
ρ(t)/σ(t)

∣∣ω − y(t)
∣∣
}
,

or

Ω
(
x(t), y(t), ρ(t), σ(t)

)
= C

(
x(t), y(t), ρ(t), σ(t)

)
+R

(
x(t), y(t), ρ(t), σ(t)

)
S, (41)

as long as σ(t) > 0 on [0, θ0].
On [0, θ0], it is obvious that the inclusion y(t) ∈ Ω

(
x(t), y(t), ρ(t), σ(t)

)
is valid.

From (38) and (39), the view of the multi-valued mapping Ω
(
x(t), y(t), ρ(t), σ(t)

)
(41)

can be expressed as

Ω
(
x(t), y(t), ρ(t), σ(t)

)
= x(t) +

√
ρ(t)σ(t)

δ
S − ρ(t)

δ
ξ0, t ∈ [0, θ0], (42)

here S is the unit ball whose centre is at the origin of the space Rn.
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Lemma 4 (Petrosyan type lemma [5]). The multi-valued mapping Ω(t) − tx1,
t ∈ [0, θ0], is monotonically decreasing with respect to the inclusion, i.e. if t1, t2 ∈ [0, θ0]
and t1 < t2, then

Ω(t1)− t1x1 ⊃ Ω(t2)− t2x1,

where Ω(t) = Ω
(
x(t), y(t), ρ(t), σ(t)

)
.

P r o o f. Let a(t) = ρ(t)/σ(t), and let us start with the inequality




(
√
a(t)−

√
1

a(t)

) t∫

0

|v(s)|2ds+ δ
√
a(t)

t∫

0

γ0(v(s))ds




2

> 0.

Add the quantity 4
( ∫ t

0 |v(s)|2ds
)2

+4δ
∫ t
0 |v(s)|2ds

∫ t
0 γ0(v(s))ds to both sides of this

inequality, from the view of function γ0(v) and according to the Cauchy — Schwartz ine-
quality, then we find




(
√
a(t) +

√
1

a(t)

) t∫

0

|v(s)|2ds+ δ
√
a(t)

t∫

0

γ0(v(s))ds




2

>

> 4







t∫

0

|v(s)|2ds




2

+ δ

t∫

0

|v(s)|2ds
t∫

0

γ0(v(s))ds


> 4

∣∣∣∣∣∣
ξ0

t∫

0

|v(s)|2ds+ δ

t∫

0

v(s)ds

∣∣∣∣∣∣

2

.

As a result, we can formulate the inequality

∣∣∣∣∣∣

(
√
a(t) +

√
1

a(t)

) t∫

0

|v(s)|2ds+ δ
√
a(t)

t∫

0

γ0(v(s))ds

∣∣∣∣∣∣
>

> 2

〈
ξ0

t∫

0

|v(s)|2ds+ δ

t∫

0

v(s)ds, ψ

〉
,

for all ψ ∈ Rn, |ψ| = 1. Due to (31), it is easy to calculate that

−2
d

dt

√
ρ(t)σ(t) =

(√
ρ(t)

σ(t)
+

√
ρ(t)

σ(t)

) t∫

0

|v(s)|2ds+ δ

√
ρ(t)

σ(t)

t∫

0

γ0(v(s))ds =

=

(
√
a(t) +

√
1

a(t)

) t∫

0

|v(s)|2ds+ δ
√
a(t)

t∫

0

γ0(v(s))ds.

From here, we obtain

− d

dt

√
ρ(t)σ(t) >

〈
ξ0

t∫

0

|v(s)|2ds+ δ

t∫

0

v(s)ds, ψ

〉
, (43)
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for all ψ ∈ R
n, |ψ| = 1. By Π-strategy (30) and from (31), we have

〈
ξ0

t∫

0

|v(s)|2ds+ δ

t∫

0

v(s)ds, ψ

〉
=

=
〈
ξ0, ψ

〉
t∫

0

|u0(v(s))|2ds+ δ
〈 t∫

0

u0(v(s))ds, ψ
〉
= −〈ξ0, ψ〉

d

dt
ρ(t) + δ

〈 t∫

0

u0(v(s))ds, ψ
〉
,

or, taking into account (43), we find

− d

dt

√
ρ(t)σ(t) > −〈ξ0, ψ〉

d

dt
ρ(t) + δ

〈 t∫

0

u0(v(s))ds, ψ
〉
. (44)

For arbitrary ψ ∈ Rn, |ψ| = 1, the multi-valued mapping Ω(x(t), y(t), ρ(t), σ(t))− tx1 has
a support function (see [24])

F
(
Ω
(
x(t), y(t), ρ(t), σ(t)

)
− tx1, ψ

)
= sup
ω∈Ω

(
x(t),y(t),ρ(t),σ(t)

)
−tx1

〈
ω, ψ

〉
.

On the strength of the properties of the support function, we use (32), (42) to calculate
the derivative of F

(
Ω
(
x(t), y(t), ρ(t), σ(t)

)
− tx1, ψ

)
with t, i.e.,

d

dt
F
(
Ω
(
x(t), y(t), ρ(t), σ(t)

)
− tx1, ψ

)
=

d

dt
F
(
Ω
(
x(t), y(t), ρ(t), σ(t)

)
, ψ
)
− 〈x1, ψ〉 =

=
d

dt
F


x0 + x1t+

t∫

0

(t− s)u0(v(s))ds +

√
ρ(t)σ(t)

δ
S − ρ(t)

δ
ξ0, ψ


− 〈x1, ψ〉 =

=
〈 t∫

0

u0(v(s))ds, ψ
〉
+

1

δ
〈S, ψ〉 d

dt

√
ρ(t)σ(t) − 1

δ
〈ξ0, ψ〉

d

dt
ρ(t).

Considering 〈S, ψ〉 = 1 (see [24, p. 33]), from here and from (44), we derive the following
results:

d

dt
F
(
Ω
(
x(t), y(t), ρ(t), σ(t)

)
− tx1, ψ

)
=

=
1

δ



δ
〈 t∫

0

u0(v(s))ds, ψ
〉
+
d

dt

√
ρ(t)σ(t) − 〈ξ0, ψ〉

d

dt
ρ(t)



 6 0,

for any ψ ∈ Rn, |ψ| = 1. This finishes the proof of Lemma 4. �

Corollary. From Lemma 4, it can be concluded that:
a) Ω

(
x(t), y(t), ρ(t), σ(t)

)
⊂ Ω

(
x0, y0, ρ0, σ0

)
+ tx1 at each t ∈ [0, θ0];

b) y(t) ∈ Ω
(
x0, y0, ρ0, σ0

)
+ tx1 for all t ∈ [0, θ0] is met, where

Ω
(
x0, y0, ρ0, σ0

)
= x0 +

ρ0σ0
δ

S − ρ20
δ
ξ0.
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Definition 8. The set

Ω∗(x0, y0, ρ0, σ0, T0
)
=

T0⋃

t=0

{
Ω
(
x0, y0, ρ0, σ0

)
+ tx1

}

is called the meeting domain of the players in the pursuit game for the case x1 = y1, where
T0 is the guaranteed capture time.

Let W be the closed subset of Rn, and let for the case x1 = y1 the differential
game (1)–(4) with the “life-line” W be studied.

Definition 9. We say that the Π-strategy (30) provides winning for the pursuer in the
“life-line” game on the time interval [0, T0], if there exists such a time moment θ0 ∈ [0, T0]
that the conditions

a) x(θ0) = y(θ0);
b) y(t) /∈ W for all t ∈ [0, θ0] are valid.
Theorem 4. Let ρ0 > σ0 and Ω∗(x0, y0, ρ0, σ0, T0

)
∩W = ∅ for the case x1 = y1.

Then the pursuer wins by using Π-strategy (30) on the time interval [0, T0] in the “life-line”
game W , where T0 =

√
2|z0|/(ρ0 − σ0).

P r o o f. The proof immediately follows from Theorem 3, Lemma 4, Corollary. �

5. Example of meeting domain in the case of multi-pursuer and one evader.
Let’s take a look at the multi-player game below:

ẍi = ui, xi(0) = xi0, ẋi(0) = ϑ,

t∫

0

(t− s)|u(s)|2ds 6 νi,

ÿ = v, y(0) = y0, ẏ(0) = ϑ,

t∫

0

(t− s)|v(s)|2ds 6 1,

where νi > 1, k = 0, xi0 6= y0, i = 1,m, δi = (νi − 1)/|zi0|. Considering Lemma 4 and
Corollary, we write the relationship

y(t) ∈
m⋂

i=1

Ωi(xi0, y0) + tϑ,

here
Ωi(xi0, y0) = xi0 +

√
νiS/δi + νiξi0/δi, ξi0 = zi0/|zi0|,

and S is the unit ball centered at the origin in R
2. We can define the players’ meeting

domain in the following way:

Ω∗
P1,...,Pm

(xi0, y0, ϑ, T̃0) =

T̃0⋃

t=0

[
m⋂

i=1

Ωi(xi0, y0) + tϑ

]
,

where T̃0 = mini=1,m

{√
2|zi0|/(

√
νi − 1)

}
.

6. Conclusion. In this paper, we have discussed the pursuit-evasion problems in
a differential game with inertial players under integral constraints on controls. Pursuit
problems have been solved by separating them into two cases. In the first case, there was
a linear dependence of the difference between the players’ initial state vectors and their
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initial velocity vectors, while in the second case, the initial velocities were the same. The
key method employed to achieve the pursuit is the Π-strategy. Furthermore, the meeting
domain of the players is constructed by applying the Π-strategy for the case, where the
players have the identical initial speeds and we have considered the “life-line” game in favor
of the pursuer for this case.

When solving the evasion problem, a specific strategy for the evader has been proposed
with delayed information, and sufficient conditions for its solvability have been obtained.
In the future, we can generalize the proposed method to more general linear and nonlinear
conflict-controlled systems with various control constraints.

Acknowledgments. We wish to thank Prof. B. T. Samatov for discussing this paper
and for providing some useful comments.
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Дифференциальная игра с инерционными игроками при интегральных
ограничениях на управления
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Для цитирования: Azamov A. A., Turgunboeva M. A. The differential game with inertial
players under integral constraints on controls // Вестник Санкт-Петербургского университета.
Прикладная математика. Информатика. Процессы управления. 2025. Т. 21. Вып. 1. С. 122–
138. https://doi.org/10.21638/spbu10.2025.109

Рассматриваются дифференциальные игры преследования-убегания при интегральных
ограничениях с инерционными игроками (преследователь и убегающий). В случае сов-
падения позиции игроков считается, что убегающий захвачен преследователем. Основ-
ной метод, используемый для преследователя в дифференциальной игре преследова-
ния, — это стратегия параллельного преследования (кратко, Π-стратегия). Получены
достаточные условия для разрешимости задач преследования-убегания. Кроме того, ис-
следуется игра «линия жизни» Айзекса в пользу преследователя в случае одинаковых
начальных скоростей игроков, в которой аналитическая формула для области встречи
игроков дана основной леммой, характеризующей ее свойство монотонности. Проведен-
ная работа расширяет и продолжает труды Р. Айзекса, Л. А. Петросяна, Б. Н. Пше-
ничного, Н. Ю. Сатимова, авторов этой статьи и других исследователей.

Ключевые слова: дифференциальная игра, преследователь, убегающий, стратегия, игра
«линия жизни».
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