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One of attractive paradigms of the public key multivariate cryptography is connected with
application of the exponentiation operations in vector finite fields of different dimensions.
The computationally heuristic method of specifying vector finite fields with a large number of
implemented modifications is a problematic area of this paradigm. In this regard, a formalized
method for the unified construction of vector finite fields is proposed.
Keywords: finite associative algebra, commutative algebra, vector finite field, power polyno-
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1. Introduction. At present development of practical post-quantum public key cryp-
tographic algorithms is a challenge of theoretical and practical cryptography [1, 2]. Mul-
tivariate public key cryptography (MPC) [3] represents an attractive direction of post-
quantum cryptography. However, the size of public key in the MPC algorithms is extremely
large. This fact introduces significant restrictions on the application areas of the said al-
gorithms. A new method for developing the MPC algorithms has been introduced in the
recent article [4], which allows for a potential public key size reduction of 10 times or more
as compared with the known MPC algorithms for a fixed value of security level. The idea
of that method is to construct the nonlinear mapping (used as public key in the form
of a set of polynomials in many variables) with a secret trapdoor by an exponentiation
operation in a vector finite field [5].

The article [4] presents the implementation of nonlinear mappings with a secret trap-
door using the vector finite fields in the form of m-dimensional finite commutative associa-
tive algebras in which the multiplication operation is defined by basis vector multiplication
tables (BVMT) constructed using a computationally heuristic method. Expanding the ca-
pabilities of the paradigm by [4] is associated with the development of formalized methods
for specifying vector finite fields, which will significantly increase the number of modifica-
tions of the latter, especially in the case of large values of m. For a fixed distribution of the
basis vectors in a BVMT the number of the vector finite field modifications increases with
the number of structural constants in the BVMT. Therefore, when developing formalized
unified methods for constructing BVMTs (like methods from articles [6, 7]), one should
provide for the possibility of parameterized specifying various distributions of structural
constants across cells of BVMTs.
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This article introduces a formalized unified method for costructing parameterizable
BVMTs setting vector finite fields of dimensions m such that the number m+ 1 is prime.
The unification of constructing BVMTs consists of using a single mathematical formula
for the case of a given series of dimension values m, which is included in the formula as
one of the parameters. Parameterizability consists in specifying the distribution of basis
vectors and structural constants across BVMT cells depending on the second and third
parameter of the said formula, correspondingly. By fixing the first two parameters and
changing the third parameter, we get the opportunity to construct BVMTs with many
structural constants that have different distributions, which determines a large number of
possible modifications of vector finite fields of a given type.

2. Preliminaries. Consider representation of an m-dimensional vector A in the next
two forms: i) A = (a1, a2, . . . , am) and ii) A =

∑m
i=1 aiei, where a1, a2, . . . , am ∈ GF (ps)

are coodinates; e1, e2, ..., em are basis vectors. If in an m-dimensional vector space (with
operations of addition of vectors and of scalar multiplication) the vector multiplication
operation is defined so that it is closed and distributive at the left and at the right relatively
the addition operation, then we get a finite m-dimensional algebra (over some field GF (ps)
with prime p and natural number s).

For example, the multiplication operation of two m-dimensional vectors A and B can
be defined by the following formula:

AB =

m∑
i=1

m∑
j=1

aibj(eiej), (1)

where every of the products eiej is replaced by a single-component vector λek that is
indicated in the intersection of the ith row and jth column of some BVMT [7].

In order to be able to define finite algebras that are fields, a necessary condition is
the use of BVMTs that define the commutative associative operation of multiplication.
However, this condition is not sufficient, which is confirmed by the BVMTs presented in
the article [8]. An example of BVMTs of a general form for the case of different dimensions,
according to which vector finite fields can be specified, is presented in [5]. The last article
also formulated another necessary condition, which is that the value ps − 1 is divisible by
m. Vector finite fields are not formed for all sets of values of structural constants present
in the BVMTs. The required set of values of the constants is generated randomly, and the
criterion for the formation of a vector finite fields is the presence of a vector of the order
equal to psm − 1.

In the MPC algorithms, the public key is formed as a set of u power (quadratic
or cubic) polynomials in n variables, which define a hard to reverse non-linear mapping
Ψ : Fn

q → Fu
q with a secret trapdoor. The public encryption is performed as mapping Y =

Π(X) of the plaintext represented in the form of n-dimensional vector X = (x1, x2, . . . , xn)
over a finite field Fq of relatively small order q, coordinates of which are variables in the
polynomials of the public key. The ciphertext represents a u-dimensional (u ⩾ n) vector
Y = (y1, y2, . . . , yu) over Fq [9, 10]. Suppose a public key Π includes the polinomials
fi (x0, x1, . . . , xn−1) , where i = 1, 2, . . . , u. Then for a given vector X we can calculate u
values y1 = f1, y2 = f2, . . . , yu = fu. Considering the latter values as coordinates of the
vector Y we get the image Y of the vector X.

Usually the public key is generated in the following way. A set of u power polynomials
f
(1)
j (j = 1, 2, . . . , u ) in n variables is composed, which defines the mapping Ψ(X) for which

it is easy to find a computationally efficient inverse mapping Ψ−1(Y ). Then, using a secret
linear mapping Λ : Fu

q → Fu
q , which is specified as a set of u linear polynomials f

(2)
j over
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the finite field Fq, and the set of polynomials f
(1)
j , it is calculated the set of polinomials

fi, which defined the mapping Π(X) = Λ (Ψ (X)) with a secret trapdoor, the latter being
the knowledge of the mappings Ψ and Λ which provide possibility to reverse Π, i.e. to
compute pre-image X as follows:

X = Π−1(Y ) = Ψ−1
(
Λ−1 (Y )

)
.

The sense of using a linear mapping is to mask the nonlinear mapping Ψ, for which
the inverse mapping Ψ−1 can easily be found (in some MPC algorithms two masking
linear mappings are used). The use of masking linear mappings results in the size of the
public key being extremely large. A direct attack on the MPC algorithms consists in
reversing the mapping Π by the way of solving a system of u power equations with set
of n unknowns {x1, x2, . . . , xn} . The best methods for solving such systems use so called
algorithms F4 [11] and F5 [12]. To ensure security level (to direct atacks) 280 to 2256 the
public key should include 26 to 110 power polynomials [9].

A novel method for developing the MPC algorithms has been proposed recently in [4]
for significantly reducing the public key size (by a factor of 10 or more). That method
consists of implementing the set of power polynomials of the mapping Ψ determined by one
or several exponentiation operations to a small degree. The paradigm by [4] allows elimina-
ting the use of masking mappings that significantly increase the public key size. The inverse
mapping Ψ−1 arises naturally as the operation of extracting roots (of respective degrees)
in vector finite fields known only to the owner of the public key. A topology of a mapping
Ψ is considered in [4], which includes exponentiation operations in 5-dimensional and 17-
dimensional vector finite fields. In that topology the linear mapping (permutation of the
coordinates of the transformed vectors) is also used, which, however, do not increase the
size of public key. When using a single vector finite field, dimension of the latter is to be
from 5 to 110 depending on the required security level.

For the MPC algorithms developed in line with the paradigm by [4], a common struc-
tural attack is calculation of the parameters of the secret modifications of the vector finite
fields used to specify hard to inverse non-linear mapping Π by the known coefficients of
the polynomials of the public key Π. Adding to the security to this structural attack can
be provided by increasing the number of independent structural constants present in the
BVMT by which the vector finite field is defined.

The sufficiency of using linear mappings free from increasing the size of the public
key is due to the fact that there is no need to provide masking of the mapping Ψ−1, since
masking of root extraction operations is ensured by the fact that from the coefficients
in the public key polynomials it is computationally difficult to restore the set of secret
structural constants used in the BVMTs to specify the multiplication operation in vector
finite fields. Recovering the modifications of the vector fields used to define the nonlinear
mapping Ψ becomes more difficult as the number of different structure constants in the
BVMTs increases, since the coefficients of the public key polynomials are determined
by a large number of structural constants. In the paradigm by [4] it is assumed to use
exponention operations in vector finite fields of dimensions from 5 to 110, depending on
the required level of security and the nonlinear-mapping topology used.

For a given value of dimension and a given distribution of basis vectors in the BVMT,
it is important to find a sufficiently large number of different distributions of structural
constants that preserve the commutativity and associativity properties of the vector mul-
tiplication operation. Ensuring a sufficiently complete solution to such a problem using
a computational heuristic method is problematic. This determines the interest in develo-
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ping formalized unified methods for specifying BVMTs with a large number of independent
structural constants and finding the distributions of the latter. The Section 3 proposes
a unified method for specifying BVMTs with parameterized distribution of the basis vec-
tors, which are suitable for defining vector finite fields. Section 4 introduces a technique
for specifying a parameterized distribution of structural constants, which preserves the
commutative and associative properties of the multiplication operation and allows one to
construct BVMTs suitable for developing hard to reverse nonlinear mappings with a secret
trapdoor.

3. Specifying distribution of basis vectors. Using formula (1) one can easily show
that a given BVMT defines associative multiplication operation, if the following equality
holds for all possible triples (ei, ej , ek):

(eiej) ek = ei (ejek) . (2)

For dimensions m such that the value m + 1 is prime, one can propose the common
mathematical formula for generating BVMTs defining commutative associative algebras:

eiej = e(ijd) mod (m+1), (3)

where parameter d = 1, 2, . . . ,m specifies m different distributions of the basis vectors (i.e.
m different BVMTs) for a fixed value of m. Table 1 shows the dimension values covered
by formula (3) representing interest for specifying the vector finite field in the framework
of the paradigm by [4]. The Proposition 1 is evident.

Тable 1. Values of m for defining vector finite fields with formulas (4) and (5)

m 4 6 10 12 16 18 22 28 30 36 40 42 46 52 58
m+ 1 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
m 60 66 70 72 78 82 88 96 100 102 106 108 112 126 130

m+ 1 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131

Proposition 1. The BVMTs constructed by formula (3) specify commutative multi-
plication operation for arbitrary fixed values of the parameters m and d.

Proposition 2. The BVMT generated by formula (3) for arbitrary fixed values of
the parameters m and d defines the finite algebra with the global two-sided unit U =
(0, . . . , 1, . . . , 0) with m − 1 zero coordinates and one coordinate equal to 1 ∈ GF (ps),
namely, ud−1 mod (m+1) = 1.

P r o o f. Using formula (1) one can write

UA = AU =

m∑
i=1

m∑
j=1

aiuj(eiej) =

m∑
i=1

m∑
j=1

aiuje(ijd) mod (m+1) =

=

m∑
i=1

aiud−1 mod (m+1)e(id−1d) mod (m+1) =

m∑
i=1

aiei = A.

Thus, the vector U is the global two-sided unit. 2
Proposition 3. The BVMTs constructed by formula (3) specify associative multipli-

cation operation.
P r o o f. For an arbitrary triple (ei, ej , ek) , for the right and left parts of equation

(2) one gets:

(eiej) ek = e(ijd) mod (m+1)ek = e(ijdkd) mod (m+1) = e(ijkd2) mod (m+1),

ei (ejek) = eie(jkd) mod (m+1) = e(ijkdd) mod (m+1) = e(ijkd2) mod (m+1).
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Thus, equality (2) holds true for all possible triples of basis vectors, hence, the multipli-
cation operation is associative. 2

4. Specifying distribution of structural constants. To provide the possibility
of including structural constants in BVMTs, the next two extentions of formula (3) are
proposed:

eiej =

{
ρte(ijd) mod (m+1), if t(′i+ ′d) mod m+ t(′j + ′d) mod m < m,

e(ijd) mod (m+1), if t(′i+ ′d) mod m+ t(′j + ′d) mod m ⩾ m,
(4)

eiej =

{
e(ijd) mod (m+1), if t(′i+ ′d) mod m+ t(′j + ′d) mod m < m,

λte(ijd) mod (m+1), if t(′i+ ′d) mod m+ t(′j + ′d) mod m ⩾ m,
(5)

where t = 1, 2, . . . ,m−1 is a parameter specifying distributions of two independent struc-
tural constants (λt and ρt) for every of the fixed pair of the values of the parameters d
and t; ′j and ′d are indices of the respective values i, j, and d modulo (m+1), the indiced
being calculated for a fixed primitive element in GF (m+1). Totally, for every fixed value
d formulas (4) and (5) specify 2(m− 1) distributions of independent structural constants.
It is easy to see that the algebras defined by the BVMTs generated by formulas (4) and
(5) are commutative and include global two-sided unit U that has the single non-zero
coordinate ud−1 mod (m+1) = ρ−1

t .
Proposition 4. The BVMT generated by formula (4) for arbitrary fixed values of

the parameters m, d, and t defines the finite algebra with the global two-sided unit U =
(0, . . . , ρ−1

t , . . . , 0) with m− 1 zero coordinates and one coordinate eqal to ρ−1
t ∈ GF (ps),

namely, ud−1 mod (m+1) = ρ−1
t .

P r o o f. For j = d−1 mod (m + 1) we have t(′j + ′d) mod m = 0 and formula (4)
gives eiej = ρtei. Using formula (1), one gets:

UA = AU =

m∑
i=1

m∑
j=1

aiuj(eiej) =

m∑
i=1

m∑
j=1

aiujρte(ijd) mod (m+1) =

=

m∑
i=1

aiud−1 mod (m+1)ρte(id−1d) mod (m+1) =

m∑
i=1

aiei = A.

Thus, the vector U is the global two-sided unit. 2
Proposition 5. The BVMTs with one structural constant ρt distribution of which is

specified by formula (4) set associative multiplication operation.
Proposition 6. The BVMTs with one structural constant λt distribution of which is

specified by formula (5) set associative multiplication operation.
P r o o f. Consider formula (5). Due to Proposition 3 the left part of (4) is equal to

λ′e(ijkd2) mod (m+1) and the right part of (4) is equal to λ′′e(ijkd2) mod (m+1). One can show
that λ′ = λ′′. Indeed, defining variables i′ = t(′i+ ′d) mod m, j′ = t(′j + ′d) mod m, and
k′ = t(′k + ′d) mod m (0 ⩽ i′, j′, k′ ⩽ m − 1), one can represent formula (5) in the next
form:

eiej =

{
e(ijd) mod (m+1), if i′ + j′ < m,

λte(ijd) mod (m+1), if i′ + j′ ⩾ m.

Using variables i′, j′, and k′ it is easy to show: i) multiplication of the product eiej
by ek contributes the structural constant λt as a scalar multiplier, if (i′ + j′) mod m +
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k′ ⩾ m; ii) multiplication of ei by the product ejek contributes a scalar multiplier λt, if
i′ + (j′ + k′) mod m ⩾ m. We have the following cases:

1. Suppose the triple (i, j, k) defines the triple (i′, j′, k′) such that i′ + j′ + k′ < m.
Then i′ + j′ < m and j′ + k′ < m, therefore, from formula (5) we have λ′ = 1 and λ′′ = 1.

2. If the triple (i, j, k) defines the triple (i′, j′, k′) such that i′+j′ < m and (i′ + j′) mod
m+ k′ = i′ + j′ + k′ ⩾ m, then λ′ = λt. To calculate λ′′ one should take into account the
next two subcases.

2.1. If j′ + k′ < m (the product ejek does not include structural constant λ), then
i′+(j′ + k′) mod m ⩾ m. Therefore, the product ei (ejek) includes structural constant λt

and λ′′ = λt = λ′.
2.2. If j′ + k′ ⩾ m (the product ejek includes structural constant λt as a factor),

then i′ + (j′ + k′) mod m = i′ + j′ + k′ − m < m. Therefore, i′ + (j′ + k′) mod m < m
and the multiplication of ei by (ejek) does not give additional scalar multiplier λt and
λ′′ = λt = λ′.

3. Suppose the triple (i, j, k) sets the triple (i′, j′, k′) such that i′ + j′ ⩾ m and
(i′ + j′) mod m + k′ < m. Then we have λ′ = λ. To calculate λ′′ one should take into
account the next two subcases.

3.1. If j′ + k′ < m (the product ejek does not include structural constant λt), then
i′+(j′ + k′) mod m = i′+ j′+k′ ⩾ m. The product ei (ejek) includes structural constant
λt, therefore, λ′′ = λt = λ′.

3.2. If j′ + k′ ⩾ m (the product ejek includes structural constant λt), then i′ +
(j′ + k′) mod m = i′+j′+k′−m = i′+j′−m+k′ = (i′ + j′) mod m+k′ < m. Therefore,
i′+(j′ + k′) mod m < m. Hence, the multiplication of ei by (ejek) does not give additional
structural constant λt and λ′′ = λt = λ′.

4. The triple (i, j, k) defines the triple (i′, j′, k′) such that i′+j′ ⩾ m and (i′ + j′) mod
m + k′ ⩾ m. One can easily show that λ′ = λ2

t and j′ + k′ ⩾ m. The latter condition
means that the product (ejek) includes the constant λt as a scalar factor. The multiplying
ei by (ejek) gives the second time the scalar factor λt, since from initial conditions of the
fourth case we have i′ + (j′ + k′) mod m ⩾ m. Hence, we have λ′′ = λ2

t = λ′.
Thus, for all cases and subcases equality λ′′ = λ′ holds true. Therefore, for all possible

triples (i, j, k) equality (2) also holds true, i.e. the multiplication operation specified by
formula (5) is associative. 2

5. Experimental verification. For the values m = 4, 6 and 10, we experimentally
constructed BVMTs corresponding to different sets of values of the parameters d and t. In
all cases, in algebras defined by a BVMT with one structural constant, the multiplication
operation was commutative and associative. The imposition of various distributions of
structural constants (for values t = 1 to m−1) into a single BVMT with the distribution of
basis vectors, given by formula (3) for a fixed value of d, preserved the indicated properties
of the multiplication operation (an expected and fairly obvious fact). The suitability of
the resulting BVMTs for specifying vector finite fields by selecting random sets of values
of structure constants has been experimentally confirmed. As a criterion for the formation
of an algebra (over GF (ps)), which is a finite field, we used the finding of a vector of order
psm − 1. The single non-zero coordinate of the unit vector U is equal to ud−1 mod (m+1) =∏m−1

t=1 ρ−1
t , where ρt ∈ GF (ps) .

Table 2 is constructed using formulas (4) and (5) with the following values of para-
meters d = 4, t = 1 (distribution of the constants ρ1 and λ1) and t = 5 (distribution of ρ5
and λ5).

484 Вестник СПбГУ. Прикладная математика. Информатика... 2024. Т. 20. Вып. 4



Тable 2. The BVMT defining a 6-dimensional vector finite field over GF (103)

e e1 e2 e3 e4 e5 e6
e1 ρ1ρ3λ5e4 ρ1ρ3ρ5e1 ρ1ρ3λ5e5 λ1ρ3λ5e2 ρ1ρ3λ5e6 λ1ρ3ρ5e3
e2 ρ1ρ3ρ5e1 ρ1ρ3ρ5e2 ρ1ρ3ρ5e3 ρ1ρ3ρ5e4 ρ1ρ3ρ5e5 ρ1ρ3ρ5e6
e3 ρ1ρ3λ5e5 ρ1ρ3ρ5e3 ρ1λ3λ5e1 ρ1ρ3λ5e6 ρ1λ3λ5e4 λ1λ3λ5e2
e4 λ1ρ3λ5e2 ρ1ρ3ρ5e4 ρ1ρ3λ5e6 λ1ρ3ρ5e1 λ1ρ3ρ5e3 λ1ρ3ρ5e5
e5 ρ1ρ3λ5e6 ρ1ρ3ρ5e5 ρ1λ3λ5e4 λ1ρ3ρ5e3 λ1λ3λ5e2 λ1λ3ρ5e1
e6 λ1ρ3ρ5e3 ρ1ρ3ρ5e6 λ1λ3λ5e2 λ1ρ3ρ5e5 λ1λ3ρ5e1 λ1λ3ρ5e4

Example 1. For the case (ρ1, λ1) = (71, 29) and ρ3 = λ3 = ρ5 = λ5 = 1 Table 2
sets the vector finite field GF

(
1036

)
with the two-sided unit (0, 74, 0, 0, 0, 0). The vector

(1, 2, 3, 4, 5, 6) is an element of the order 1036 − 1 = 1194052296528.
Example 2. For the case (ρ5, λ5) = (91, 77) and ρ1 = λ1 = ρ3 = λ3 = 1 Table 2

sets the vector finite field GF
(
1036

)
with the two-sided unit (0, 60, 0, 0, 0, 0). The vector

(1, 2, 3, 4, 5, 6) is an element of the order 1036 − 1.
Example 3. For the case (λ1, λ3, λ5) = (35, 19, 13) and ρ1 = ρ3 = ρ5 = 1 Table 2

sets the vector finite field GF
(
1036

)
with the two-sided unit (0, 1, 0, 0, 0, 0). The vector

(1, 2, 3, 4, 5, 6) is an element of the order 1036 − 1.
6. Conclusion. The introduced unified method with paramerization of distributions

of basis vectors and structural constants suites well for designing non-linear hard to inverse
mappings Π with secret trapdoor implemented as exponentiation operations in vector
finite fields with a secret set of structural constants. Depending on the used topology of
the Π mapping the vector finite fields of dimensions 6 to 102 can be potentially applied,
when implementing the paradigm by [4] for developing the MPC algorithms. Seach for
other parameterized unified methods for generating BVMTs for the same destination also
represents interest. One of research tasks is finding additional distributions of structural
constants in BVMTs generated by the introduced method (possibly by a heuristic way).

A task representing independent interest is to develop a theoretic criterion for sui-
tability of a BVMT with the given distribution of the basis vectors for specifying vector
finite fields.
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Algebra, 1999, vol. 139, no. 1–3, pp. 61–88.
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Одна из привлекательных парадигм многомерной криптографии с открытым клю-
чом связана с применением операций возведения в степень в векторных конечных
полях различных размерностей. Проблемной областью данной парадигмы является
вычислительно-эвристический метод задания векторных конечных полей с большим
количеством реализуемых модификаций. В связи с этим предлагается формализован-
ный метод унифицированного построения векторных конечных полей.
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