UDC 517.977 Becruuk CII6I'Y. Ilpuknagmnas maremaruka. Mudopmaruka... 2024. T. 20. Boim. 3
MSC 35K70

On the boundary control problem for a pseudo-parabolic equation
with involution

F. N. Dekhkonov

Namangan State University, 316, ul. Uychi, Namangan,
160136, Uzbekistan

For citation: Dekhkonov F. N. On the boundary control problem for a pseudo-parabolic equation
with involution. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science.
Control Processes, 2024, vol. 20, iss. 3, pp. 416-427. https://doi.org/10.21638 /spbul0.2024.309

Previously, some control problems for the pseudo-parabolic equation independent of invo-
lution were considered. In this paper, we consider a boundary control problem associated
with a pseudo-parabolic equation with involution in a bounded one-dimensional domain.
On the part of the border of the considered domain, the value of the solution with control
function is given. Restrictions on the control are given in such a way that the average value of
the solution in the considered domain gets a given value. The problem given by the method
of separation of variables is reduced to the Volterra integral equation of the second kind.
The existence of the control function was proved by the Laplace transform method.
Keywords: boundary problem, Volterra integral equation, control function, Laplace trans-
form, involution.

1. Introduction. In this article, we consider the following pseudo-parabolic equation
with involution in the domain Q7 := (0,7) x (0, 00):

U (2, 8) — Ugy (@, 1) + € U (T — T, 1) — Ugge (2, 1) F EUgm(m —2,8) = 0, (x,t) € Qp, (1)
with boundary value conditions
w(0,t) = v(t), wu(mt) =0, t=0, (2)

and initial condition
u(z,0) = 0, 0< <, (3)

here ¢ is a nonzero real number such that |¢| < 1 and v(¢) is the control function, which
gives the flow amplitude.

Definition 1. If the control function v(t) € W3 (R ) satisfies the conditions v(0) = 0
and |v(t)] <1 on the half-line t > 0, we call it admissible control.

We will prove later in Section 3 that the function v belongs to the class W3 (R..).

Differential equations with modified arguments are equations in which the un-known
function and its derivatives are evaluated with modifications of time or space variables;
such equations are called, in general, functional differential equations. Among such equa-
tions, one can single out, equations with involutions [1].

Definition 2 ([2, 3]). A function f(x) £ x maps bijectively a set of real numbers Q,
such that

f(f(x)) = zor f7l(z) = fla),
1s called an involution on Q.

(© St. Petersburg State University, 2024
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Due to the widespread use of partial differential equations in physics and technology,
there is always a great interest in the study of boundary value control problems. For this
purpose, various boundary problems for parabolic and pseudo-parabolic equations have
been widely studied by many researchers.

It can be seen that equation (1) for ¢ = 0 is a classical pseudo-parabolic equation.
If € # 0, equation (1) relates the values of the second derivatives at two different points
and becomes a nonlocal equation. It is known that boundary control problems for the
pseudo-parabolic equation in the case € = 0 are studied in detail in works [4, 5].

The pseudo-parabolic type equations arise in areas such as fluid flow [6], heat trans-
fer [7], and the diffusion of radiation [8]. Roughly speaking, pseudo-parabolic equations
account for higher order correction in the model than do parabolic equations. The boun-
dary control of a pseudo-parabolic equation and compare the results to those of parabolic
equations was studied in [9]. The stability, uniqueness, and existence of solutions of some
classical problems for the considered equation are studied in [10]. In [11], the point con-
trol problems for pseudo-parabolic and parabolic type equations are considered. In [12],
some problems related to distributed parameter impulse control problems for systems were
studied.

We now consider the following control problem.

Control problem. Suppose that the function p(t) is given. Then find the control
function v(t) from the equation

/u(x,t) dr = o(t), t=0, (4)

here u(z,t) is the solution of the mized problem (1)—(3).

The physical meaning of the equation (4) is the average temperature in the rod.

In [13, 14], the optimal control problem for the parabolic type equations was studied.
Control problems for the infinite-dimensional case were studied by Egorov [15], who gene-
ralized Pontryagin’s maximum principle to a class of equations in Banach space, and the
proof of a bang-bang principle was shown in the particular conditions.

The boundary control problem for a parabolic equation with a piecewise smooth
boundary in an n-dimensional domain was studied in [16] and an estimate for the minimum
time required to reach a given average temperature was found. Control problems for the
heat transfer equation in the three-dimensional domain are studied in [17].

Control problems for parabolic equations in bounded one and two-dimensional do-
mains are studied in works [18-21]. In these articles, an estimate was found for the mini-
mum time required to heat a bounded domain to an estimate average temperature. The
existence of control function is proved by Laplace transform method.

A lot of information on the optimal control problems was given in detail in the mono-
graphs of Lions and Fursikov [22, 23]. Practical approaches to general numerical optimiza-
tion and optimal control for equations of the second order parabolic type are studied in
works such as [24, 25].

It is known that in recent years, due to the increasing interest in physics and mathe-
matics, the boundary problems related to heat diffusion equations related to involution
are widely studied. Note that in recent years, there have been many papers on spectral
problems for involved differential operators (see [26]). In [27], the classical solution of
the initial-boundary value problem for the first-order partial differential equation with
involution in the function and its derivative was determined by the Fourier method.
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In [28], a boundary value problem for the heat equation associated with involution
in a one-dimensional domain is studied. Many boundary value problems for parabolic and
pseudo-parabolic equations were studied in works [29-31].

In this work, the boundary control problem for the pseudo-parabolic equation with
involution is considered. The boundary control problem studied in this work is reduced to
the Volterra integral equation of the second kind by the Fourier method (Section 2). In
Section 3, the existence of a solution to the integral equation is proved using the Laplace
transform method.

2. Volterra integral equation. In this Section, we consider how the given control
problem can be reduced to a Volterra integral equation of the second kind.

We now consider the spectral problem

X'z)—eX"(r—2)+XX(z) =0, 0<z<m,

X0)=X(r)=0, 0<z<m,

here |e] < 1, e € R\ {0}. It is proved in [29, 30] that expressing the solution of spectral
problem in terms of the sum of even and odd functions, one finds the following eigenvalues:

Aor =4(1+¢e)k? EeN, (5)
Aops1 = (1—¢)(2k+1)?, ke Ny=NuU{0}, (6)
and we have the eigenfunctions
Xop =sin2kx, keN, Xopyy =sin(2k+ 1)z, k€ Np.
By the solution of the problem (1)—(3) we understand the function u(z,t), which is

given in the form
T—x

u(z,t) = v(t)

where the function w(zx,t) € Ciztl (Q7) N C(Q7) is the solution to the mixed problem

- w(xat)v (7)

T—2x
Wi (2, 1) — W (X, 1) + € Wae (T — T, 1) — Wagt (X, 1) + € Wage (M — 2, 8) = - V' (t),

with initial-boundary conditions
w(0,t) = w(m, t) =0, w(x,0)=0.

We solve the solution of the above mixed problem by the Fourier method.
Thus, we obtain (see [32])

t

2= 1

_ = — (t—s) , 1 .

w(z,t) = Z%H 1+)\2k+1 (/e o V(s)ds) cin(2k +1)s +
0

2 = 1 /
2 g [0 ) s )
T 2k
0

A
here p, = 155
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It follows from (7) and (8), we get the solution of the mixed problem (1)—(3):

™=

u(z,t) = v(t) —

™

2 e’} 1 t
_ Z ST )\Qkﬂ (/ —p2k+1(t—s) /(s) ds) sin(2k + 1)z —
0
t

2«1 1
-z — —p2k(t—s) §n 2
- 321 % 17 ar (/e V' (s) ds) sin 2kzx. (9)

0

Using the condition (4) and the solution (9), we can write

K ™

@(t):/u(x,t)dxzy(t)/ﬂ—_mdx—

™
0 0

0o t ™

2 1 1

_ ,E —h2e+1(t=5) /(&) d in(2k + Do dr —

Wk_02k+11+)\2k+1 /e V'(s) s/sm( + 1)z dx
= 0 0

T

t
/e_NZk(t_S) 1/(5) ds /Sin 2kz dx.
0

0
= Vt)/ﬂ-_
0
& _( 1)2k+1

2 Z 1
™ s (2]'{3 + ].) 1 + >\2k+1

2N 1
SRl miea

Then we may write

e Hakt1(t—s) ( )ds —

t
1—(—
[ —pak(t—s) d
Z 4k2 1+)\2 /e (s) ds.
0

It is clear that 1 — (—=1)?***1 =2 and 1 — (-1)?* =0 for k =0, 1,.... Then we get

o(t) = I/(t)/w_xdx—

-~

2 & 2 1

2 —h2k+1(E=5) 1/ () ds. 10

W;O 2k +1)2 1+ Aops /e vi(s)ds (10)
- 0

According to the definition of the control function v(¢) and (10), we can write

) (t)/ﬂ-_xd Zi 2 1 .
= v —v(t) =
4 o drmv®) 2k + 1)2 1+ Aakon
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t

4(1—¢) & 1 / _ —s
+ e M2kt (t=5) 1 (g) .
s Z (14 Aagy1)? ) ()

k=0

According to Parseval equation,

/ Tz, 4 i 1
r = —
) T ™= (2k +1)%
As a result we have -
_ é _ H2k+1
7r k:O (2k +1)2
- t
4(1—¢) / _ _
e Mkt (t=s) (g ds,
;0 14 )\2k+1 (5)
= 0
Aokl
here 0 < pog41 = Thaae i 1
We set .
= Z Bopp1 e HHtrt >0, (11)
k=0
and -
% _ M2k41 (12)
T k:o (2k 4+ 1)2

where Pof11 is defined as

4(1—¢) 1

Bok+1 = , k€N (13)

(14 Aagg1)?

Thus, we have the following Volterra integral equation of the second kind:
t) + /K(t —s)v(s)ds = p(t), t>0. (14)

Assume that M > 0 is constant. Then we denote by W(M) the set of function
© € W2(—00,+00), p(t) = 0 for all t+ < 0 which satisfying the condition

lelwzr,y < M.

We present the following main theorem.

Theorem. There exists M > 0 such that for any function ¢ € W (M) the solution
v(t) of the Volterra integral equation (14) exists and satisfies condition |v(t)| < 1.

Proposition 1. Assume that € is a nonzero real number such that |e| < 1. Then,
the kernel K(t) of the integral equation (14) is continuous on the half-line t > 0.

P r o o f. According to (5) and (6)

>\2k+1 = (1—5) (2k+1)2, k € Np.
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Then from (13)
4(1—¢) 1

(14 Aopy1)?

0 < Bopt1 =

Thus, from (11) we have

4(1—¢) & 1
0< K —p2rt1t < —C.,
ZﬂQk—i—l € . ;) (1 T )\2k+1)2 €

here C; is a constant only depending on ¢. O
3. Existence of control function. In this Section, we will consider at the existence
of the control function.
Now, we rewrite the integral equation (14)

+/K(t—s)u(s)d5=<p(t), t> 0.

We find the solution of this Volterra integral equation using the method of Laplace

transform. We know that -

v(p) = /e*pt v(t) dt.
0
Then we use Laplace transform obtain the equation

[e%e] t
e Phu(t) dt+/e Phat | K(t —s)v(s)ds =
0

= av(p)+ K(p) ¥(p).

=«

Thus, we obtain N
o) = PP
a+ K(p)

where p=¢+i7, £ >0, 7 € R, and we can write the function v(t) as

§+ioco +oo )
V() = / o) eptdp:i/—@@*”) (&N g (15)
2m’£ /| a+ K(p) 2 ) a+ K(E+iT)

Proposition 2. The following estimate is valid:

~ C
\a+K(§+i7)|>ﬁ, £>0, TeR,

here o > 0 is defined by (12) and C¢ > 0 is a constant only depending on .
P roof It is clear that « > 0, which defined by (12). Using the Laplace transform,
we may write

oo 00 o
_ /K(t) e~ Pt gt — 2621@-&-1 /e—(P+u2k+1)t dt —
0 k=0 0
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_ Z Bokt1

P+ foke1
where K (t) defined by (11) and

Pk
K =
a+K(E+iT) E £+u2k+1+”

Bak+1 (§ + takt1) Bok+1
> Sha

= (§ 4 pok41)® +7° Hok+1)? + 72
= Re(a+ K(E+i7)) +ilm(a+ K(£+iT)),
Re(a+ K(€+i7)) and Im(a 4+ K (& +i7)) are defined as

Bak+1 (€ + par+1)
« (&4 pars1)® + 72

Re (a+K(§+zT))—a+Z

Im(a+ K(€+i7)) :772 €

We know that

(€ + pan1)? + 72 < [(E+ parsn)® + 1] (1 +72),

and we get
1 1 1
> . 16
€+ por1)? +72 7 1+ 72 (§+ pagy1)? + 1 (16)
Thus, according to (16) we can obtain the following estimates:
~ : — Baks1 (§+ portr)
Re(a+ K +i7))|=a+ >
Rela+ KE+inl=a+d oot
1 Z Bart1 (E+ part1) _ Cue (17)
1+T2 &+ pors1)?+1  1+72
and
~ = Bak+1
Im(a+ K(&E+1i7))| = |7 >
o Rl im)l = ) 3 e 5
uiRS Bor+1 Coelrl
== . 18
1+T2Z(f—|—u2k+1) 241 1472 (18)

Parameters C ¢, Co ¢ are constants only depending on £ and are as

Z Bok+1 (€ + ,U2k+1 i 52k+1
(€ + port1)? - (E+ por1)?+1

From (17) and (18), we have the estimates
la+ K(E+i7))? = |Re(a+ K(€+i7)]> + [Im(e + K (€ +i7))]> >
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min(C7 ., C3 ;)

- 1+ 72
and o
~ ) ¢
a+KE+iT)| 2 ———,
ot R +in)> =

here C& = min(C’l,g, 0275).
Then, proceeding to the limit as & — 0 from (15), we obtain the equality

+oo

v(t) = = / D) ir gy,
2m a+ K(iT)

—o0

(19)

(20)

Proposition 3 [19]. Assume that o(t) € W(M). Then for the imaginary part of the

Laplace transform of function ¢(t) the inequality is hold

+oo
/Wﬂmﬂ¢1+ﬂdr<cuﬂmgmw

where C > 0 is a constant.
Now we prove Theorem.

P r o o f of Theorem. First of all, we prove that v € W3 (R,). Due to (19) and (2

we get
—+oo

/|y 1+ |P)dr = /

air) |

~ 1+ | dr <
a+ K(iT)

< Cy / PGP+ |7)2dr = Colleliyzm):

— 0o

here Cy = min(C o, Ca,0) which is defined by (19).
Besides, we have

t

u(t) — (s)| = /umn@ <V - 52,

S

From (19), (20) and Proposition 3, we can write

+o0 .
1 lp(i )|

— dr <
27T7 oo+ K(i7)]

()] <

/|<p iT) V14 72dr <

< =< ol <IM_
= 271'00 A W22(R+) = 27TC() o

<
27TC’

where M = %
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4. Example. We consider the following function:

0, for t<0;
t) = ) = 21
e (t) {Ht2 e~t, for t>0, 1)

where H > 0 is a constant number. The physical meaning of the function ¢(¢) is the
average temperature in the rod.

Suppose € = 1 in equation (1). Then the function K(t) and o determined by (11)
and (12) are as follows:

oo

8 1
K(t) = — - - @@ *H2k+1t’ t>0,
® W];)(2+(2k+1)2)26
2
here popy1 = 2_5_2(];%)1)2, and
4 & 1
= e — 22
@ w§2+(2k+1)2 (22)

We can represent the kernel K (¢) in the form

8 1
K(t) = — —pat = —H2k4+1t
H=gr¢ +7rkz::1(2+(2k+1)2)26

_ e*F‘lt(i—kO(l) 6%(#3*#1))7 = }
97 3

Consequently, we can write K (t) ~ & e~3t for t > 0.
In this case, the main integral equation (14) can be replaced by the approximation

t
8
9—/eéts) (s)ds = Ht*e™", t>0.
0

s

We obtain the following solution using the Laplace transform

ﬁ()—ﬁ 3p+1
P G A+ )Y
hereA—1+375>0
From (22) we can write
4 1 4
==y — > —.
@ w;2+(2k+1)2 37
Then,
8 1 8 3w
A=14+——<1+——=3.
Jr37roz +371'4

Thus, we define the original function v(¢), which is the solution of the integral equa-
tion, as

C2H9(1-A) 4,
V(t)77m6
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2Het( L, 30-4), 9(1—A)>' (23)

A-3 (A—3)2"  (A-3)3
It is known that v(0) = 0. Set

(67

g(t) 2 gZ(A)

2¢7t (1, 3(1—A), 9(1—A)
- <A3t+(A3)2t i )) t>0.

Note that lim;_, g(¢t) = 0. Let the function |g(t)| reach its maximum value at the
point T*. Therefore, we can write

max |g(t)| = [g(T")| = B

here B = const > 0.
If we take as H < %, then we have the following estimate:

V()] < Hlg(t)| < HB < 1

Thus, when the average temperature in the rod is given by equation (21), we found
the control function v(t) in the form (23) and verified that it is admissible.

5. Conclusion. In this paper, a boundary value control problem for a pseudo-
parabolic equation with involution is considered. The studied boundary control problem
is reduced to the Volterra integral equation of the second kind by the Fourier method, and
the existence of a solution of the integral equation is proved using the Laplace transform
method. In future research, we will continue to improve and study boundary-value con-
trol problems for pseudo-parabolic equations involving involution, including proving the
existence of control function in two- and n-dimensional domains.
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O 3ajave rpaHUYHOTO yNpPaBJEHUS AJis IICEBAONapadoIMIeCcKOTo ypaBHEHUS
C MHBOJIIOLUEN

®. H. /lexxonos

Hamanrauckuii rocy1apCTBEHHBI YHUBEPCUTET,
V3b6ekucran, 160136, Hamanran, yiu. Yitaun, 316

st uurupoBauusi: Dekhkonov F. N. On the boundary control problem for a pseudo-parabolic
equation with involution // Bectauk Cankr-Ilerep6yprckoro yamsepcurera. [lpukiagnas mare-
maruka. Uudopmaruka. I[Iponeccer yupasienusi. 2024. T. 20. Bem. 3. C. 416-427.
https://doi.org/10.21638 /spbul0.2024.309

Panee Ob11u pelieHbl HEKOTOPBIE 3a/1a9H YIIPABJIEHNs [ICEBIONTaPabOJIMIeCKUM YpaBHEHNEM,
He 3aBUCSIINE OT WHBOJONMK. B 1aHHO paboTe OMUCHIBAETCS 3a/1a9a TPAHUIHOTO YIIPaBJIe-
HISI, CBSI3aHHAS C TICEB0NAPAOOIMIECKIM YPAaBHEHIEM C MHBOJIIONMEH B OTPAHUIEHHON OJTHO-
MepHoit obiactu. Ha yacTu rpaHuibl u3yd4aeMoil 006/I1aCTH JIaHO 3HAYEHUE PEIIeHus C (PyHK-
mueit ynpasienusi. OrpaHudeHus] Ha yIOpaBIeHUE 3aJJaI0TCS TaKUM 0Opa3oM, 94TOOBI B pac-
CMaTpUBaEeMOii 00JIACTH CpeHee 3HaYeHHe PEIIeHusI CTAJO 3aJaHHBIM. 3aada, OIpPeIe/Ise-
Masi METOJIOM pa3JejieHusl IePEMEHHbBIX, CBOJIUTCA K MHTErPaJbHOMY ypaBHeHHUI0 BoiabTeppa
BTOporo poaa. CyimecTBoBaHme DYHKIIMN yIPABIEHUs JIOKA3AHO METOIOM Mpeobpa30BaHUsT
Jlamnaca.

Karoueswie caosa: KpaeBas 3aljatda, HHTErpaJibHOE ypaBHeHne Bosbreppa, QyHKIMS yIpas-
Jenusi, peobpa3oBanue Jlammaca, HHBOIOINSA.
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