# ПРИКЛАДНАЯ МАТЕМАТИКА

УДК 004.94, 616-036.22 MSC 92D30, 93A30, 68T05

### Интегральная модель притока и оттока и ее приложения\*

Ю. Е. Балыкина<sup>1,2</sup>, В. В. Захаров<sup>1</sup>

- <sup>1</sup> Санкт-Петербургский государственный университет,
- Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9
- <sup>2</sup> Государственный университет морского и речного флота имени адмирала С. О. Макарова, Российская Федерация, 198035, Санкт-Петербург, ул. Двинская, 5/7

Для цитирования: Балыкина Ю. Е., Захаров В. В. Интегральная модель притока и оттока и ее приложения // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2024. Т. 20. Вып. 2. С. 121–135. https://doi.org/10.21638/spbu10.2024.201

Описана общая интегральная модель притока и оттока динамической системы, параметры которой имеют стохастический характер. Для такого типа динамических систем формулируется общий принцип динамического баланса, а также вводятся понятия интервальной динамической сбалансированности интегральных объемов притока и оттока и характеристики динамического баланса. Класс стохастических динамических процессов и систем притока и оттока, удовлетворяющих принципу динамического баланса, достаточно широк (распространение эпидемий вирусов и динамика заболеваемости в медицине, процессы изменения численности и структуры населения в демографии, динамика спроса-предложения в экономике и т. д.). Возможности применения предлагаемой модели для построения кратко- и долгосрочных прогнозов демонстрируются на примерах распространения эпидемии COVID-19 в Москве и Санкт-Петербурге, а также прогнозирования роста населения Земли и отдельных стран. Приводятся результаты вычислительных экспериментов по построению ретроспективных прогнозов состояния динамических систем с использованием метода динамических трендов стохастических параметров интегральной модели и классического метода ARIMA. Проводится сравнительный анализ точности прогнозирования.

Ключевые слова: динамические системы притока и оттока, принцип динамического баланса, характеристика динамического баланса, математическое моделирование, прогнозирование.

1. Введение. Класс стохастических динамических процессов и систем притока и оттока достаточно широк. К нему, например, относятся многочисленные процес-

<sup>\*</sup> Исследование выполнено за счет гранта Российского научного фонда № 23-21-10049

<sup>(</sup>https://rscf.ru/project/23-21-10049) и гранта Санкт-Петербургского научного фонда.

<sup>©</sup> Санкт-Петербургский государственный университет, 2024

сы в области здравоохранения, такие как эволюция вирусных эпидемий и заболеваний невирусного характера, в области демографии — процессы роста численности и изменения структуры населения стран и Земли в целом, в экономике — процессы движения капиталов.

Пусть динамическая система X в момент времени  $t = t_0 \ge 0$  состоит из  $X(t_0) \ge 0$ элементов определенного типа. Предположим, что в каждый момент времени  $t = t_0 + 1, t_0 + 2, \ldots, t_0 + T$   $(1 \le T < \infty)$  задано число  $x_{inf}(t) > 0$  новых элементов того же типа, поступающих в систему, и число  $x_{of}(t) > 0$  элементов, покидающих систему,  $x_{inf}(t_0) = x_{of}(t_0) = 0$ . Временные ряды  $x_{inf}(t)$  и  $x_{of}(t)$  будем соответственно называть притоком и оттоком. Рассмотрим дискретную модель динамики системы X(t) при наличии притока  $x_{inf}(t)$  и оттока  $x_{of}(t)$ . Очевидно, что состояние системы можно описать дискретным уравнением

$$X(t) = X(t-1) + x_{\inf}(t) - x_{of}(t).$$
(1)

Если приток и отток представляют собой недетерминированные динамические процессы, то эволюция системы X(t) есть случайный процесс, определяемый динамикой временных рядов притока и оттока, а сама система (1) в общем случае имеет стохастический характер.

Прогнозирование динамики такой системы не представляет труда, если значения притока и оттока  $x_{inf}(t)$  и  $x_{of}(t)$  являются детерминированными функциями времени. Для анализа и прогнозирования систем, для которых указанные временные ряды стационарные, существуют много статистических методов, позволяющих генерировать прогнозы достаточно высокой точности. Однако если условие стационарности не выполняется и/или функции распределения неизвестны, то принятие решений о построении прогнозов динамики системы будет связано со значительной неопределенностью.

К наиболее известным и часто используемым моделям прогнозирования временных рядов относится модель ARIMA(p, d, q). Аббревиатура ARIMA носит описательный характер и отражает ключевые аспекты самой модели (AutoRegressive Integrated Moving Average, интегрированная модель авторегрессии — скользящего среднего). AR отвечает за авторегрессионную часть, т. е. за порядок запаздывания (p), I — за степень разности (d), MA — за размер окна скользящего среднего, также называемого порядком скользящего среднего (q). Получается, что разности временного ряда порядка d подчиняются модели ARMA(p, q).

В общем виде модель ARIMA(p, d, q) можно представить следующим образом:

$$\Delta^d X_t = c + \sum_{i=1}^p a_i \Delta^d X_{t-i} + \sum_{j=1}^q b_j \varepsilon_{t-j} + \varepsilon_t,$$

где  $a_i, b_j, c$  — параметры модели;  $\varepsilon_t$  — стационарный временной ряд;  $\Delta^d$  — оператор разности временного ряда порядка d (последовательное взятие d раз разностей первого порядка);  $X_t$  соответствует значению X(t).

Автокорреляционные методы регрессионного анализа достаточно широко применялись для прогнозирования, например, динамики временного ряда притока новых случаев заболевания во время пандемии COVID-19. В статьях [1–4] рассматривается использование модели ARIMA при построении прогнозов распространения пандемии в ряде стран мира. Следует отметить, что эта модель по сравнению с другими инструментами дает более точные прогнозы, однако, хотя модели временных рядов и являются популярным инструментом прогнозирования, их применение для оценки распространения новых инфекций не всегда позволяет построить прогнозы высокой степени точности.

Модели анализа временных рядов широко внедрены для прогнозирования тенденций, структурных сдвигов, циклов и ненаблюдаемых значений и доказали свою полезность в области медицины [5, 6]. Было показано, что модель авторегрессионного скользящего среднего обладает многообещающей точностью для прогнозирования динамики различных инфекционных заболеваний [7, 8]. При этом исследователи отмечают, что ARIMA способна давать качественные результаты на краткосрочном горизонте прогнозирования [9].

При изучении COVID-19 с помощью модели ARIMA проводилось прогнозирование количества новых случаев заболевания, смертей и выздоровлений на основе ежедневных данных из разных стран для оценки будущей динамики эпидемии [10-13]. В течение первой волны эпидемии COVID-19 было несколько попыток спрогнозировать дальнейшее развитие эпидемической ситуации благодаря моделям ARIMA. Например, в работе [14] модель ARIMA применялась для краткосрочного прогноза общего количества новых случаев заболевания на основе ежедневных данных ООН с 21 января по 16 марта 2020 г. Для оценки построенных моделей использовались информационный критерий Акаике (AIC) и тест Люнг-Бокса. Чтобы оценить достоверность предложенной модели, были рассчитаны средняя абсолютная процентная ошибка (MAPE) и среднеквадратическая ошибка (RMSE) между наблюдаемыми и спрогнозированными значениями числа новых случаев COVID-19. Авторы [14] предложили использовать модель с параметрами ARIMA(1, 2, 1), при этом горизонт прогнозирования составлял 5 дней. В [15] была проанализирована динамика развития эпидемии COVID-19 в Южной Африке. С помощью модели ARIMA(11,1,9) был осуществлен 15-дневный прогноз новых случаев заболевания COVID-19, обучающими историческими данными служили сведения за период с 7 марта 2020 г. по 3 августа 2021 г.

**2. Интегральная модель притока и оттока.** Рассмотрим суммы членов временных рядов притока и оттока до момента времени  $t \leq T$ .

Определение 1. Будем называть  $X_{inf}(t)$  интегральным значением притока в систему X с момента времени  $t_0 + 1$  до момента времени  $t \leq T$  сумму членов временного ряда притока:

$$X_{\inf}(t) = \sum_{\tau=t_0}^{t} x_{\inf}(\tau).$$

**Определение 2.** Будем называть  $X_{of}(t)$  интегральным значением оттока из системы X с момента времени  $t_0 + 1$  до момента времени  $t \leq T$  сумму членов временного ряда оттока:

$$X_{\rm of}(t) = \sum_{\tau=t_0}^t x_{\rm of}(\tau).$$

Следует заметить, что полученные таким образом временные ряды  $X_{inf}(t)$  и  $X_{of}(t)$  зависят от всех членов временных рядов  $x_{inf}(\tau)$  и  $x_{of}(\tau)$ ,  $t_0 + 1 \leq \tau \leq t$  соответственно.

Уравнение (1) с учетом введенных ограничений можно преобразовать к виду

$$X(t) = X(t_0) + X_{inf}(t) - X_{of}(t).$$

Вестник СПбГУ. Прикладная математика. Информатика... 2024. Т. 20. Вып. 2

Введем также для любого  $t > t_0 + 1$  следующие обозначения:

$$r_{\rm inf}(t) = 100 \cdot \frac{X_{\rm inf}(t) - X_{\rm inf}(t-1)}{X_{\rm inf}(t-1)},\tag{2}$$

$$r_{\rm of}(t) = 100 \cdot \frac{X_{\rm of}(t) - X_{\rm of}(t-1)}{X_{\rm of}(t-1)}.$$
(3)

Величина  $r_{inf}(t)$  называется процентным приростом интегрального значения притока в момент времени t, а  $r_{of}(t)$  — процентным приростом интегрального значения оттока.

Рассмотрим систему дискретных уравнений переменных X(t),  $X_{inf}(t)$  и  $X_{of}(t)$  с недетерминированными параметрами  $r_{inf}(t)$  и  $r_{of}(t)$  (см. (2) и (3)):

$$X(t) = X(t_0) + X_{inf}(t) - X_{of}(t),$$
(4)

$$X_{\rm inf}(t) = \left(1 + \frac{r_{\rm inf}(t)}{100}\right) X_{\rm inf}(t-1),\tag{5}$$

$$X_{\rm of}(t) = \left(1 + \frac{r_{\rm of}(t)}{100}\right) X_{\rm of}(t-1)$$
(6)

при  $X_{inf}(t_0) = X_{of}(t_0) = 0, t > t_0 + 1$ . Систему (4)–(6) будем называть интегральной моделью притока и оттока системы X.

Тогда справедливо следующее утверждение.

**Утверждение**. Пусть  $X(t_0) = 0$ ,  $x_{inf}(t_0) = x_{of}(t_0) = 0$ ,  $x_{inf}(t) > 0$  и  $x_{of}(t) > 0$ для всех  $t > t_0$ . Для того чтобы множество динамической системы X, состояние которой удовлетворяет системе (4)–(6), было не пусто при  $t > t_0$ , необходимо и достаточно, чтобы для любого  $t > t_0$  было выполнено неравенство

$$X_{\inf}(t) > X_{\text{of}}(t). \tag{7}$$

Д о к а з а т е л ь с т в о. *Необходимость*. Пусть множество системы X не является пустым при  $t > t_0$ , это означает, что X(t) > 0. Тогда, поскольку  $X(t_0) = 0$ , с учетом системы (4)–(6) получаем справедливость неравенства (7) для  $t > t_0$ .

Достаточность. Пусть для всех  $t > t_0$  неравенство (7) выполняется. Тогда X(t) > 0 при любом значении  $X(t_0) \ge 0$ . То есть множество элементов системы X не является пустым при любом при  $t > t_0$ .

Рассмотрим для всех значений t, таких, что  $t_0 + 1 \leq t \leq t_0 + T$ , задачу целочисленного линейного программирования

$$\min_{t_0+1\leqslant\tau\leqslant t}\tau\tag{8}$$

при условии, что

$$X_{\inf}(\tau) \geqslant X_{\text{of}}(t). \tag{9}$$

Обозначим через  $\tau(t)$  решение задачи (8), (9).

Справедлива следующая теорема.

**Теорема (принцип динамического баланса систем притока и оттока).** Пусть для любых целых значений t, таких, что  $t_0 + 1 \le t \le t_0 + T$ , выполнено неравенство  $X_{inf}(t) > X_{of}(t)$ ,  $u \tau(t)$  есть решение задачи целочисленного программирования (8), (9). Тогда для любых значений t, таких, что  $t_0 + 1 \le t \le t_0 + T$ , имеет место неравенство

$$X_{\inf}(\tau(t)) \ge X_{\inf}(t) \ge X_{\inf}(\tau(t) - 1).$$
(10)

Доказательству теоремы 1 в [16].

Замечание. В соответствии с принципом динамического баланса систем притока и оттока временные ряды  $X_{inf}(t)$  и  $X_{of}(t)$  удовлетворяют условию (10), которое содержательно означает, что величины интегральных объемов оттока в момент времени t находятся между последовательными значениями интегральных объемов притока в моменты времени  $\tau(t) - 1$  и  $\tau(t)$ . Такое свойство будем называть интервальной динамической сбалансированностью притока и оттока.

Определение 3. Пусть  $\tau(t)$  есть решение задачи (8), (9). Величина  $\theta(t) = t - \tau(t)$  называется характеристикой динамического баланса интегральных объемов притока и оттока в системе X.

## 3. Применение интегральной модели притока и оттока.

**3.1. Прогнозирование динамики эпидемий новых вирусов.** Наиболее популярной моделью для описания процессов распространения инфекционных заболеваний в некоторой популяции является трехкамерная модель SIR (Susceptible — Infected — Removed). В текущий момент времени каждый человек из этой популяции принадлежит одной из трех групп: восприимчивые к вирусу (Susceptible), инфицированные (Infected) и группа, для которых болезнь завершилась (выздоровевшие или умершие (Removed)). В группу восприимчивых входят все люди, которые еще не подверглись заражению инфекцией. По мере распространения вируса часть из них переходят в группу инфицированных, а затем в группу выбывших (выздоровевших или умерших). Предполагается, что полное число людей в популяции равно сумме численностей этих трех групп. Впервые модель была в общем виде описана в работе У. Кермака и А. Мак-Кендрика в 1927 г. [17], однако наибольший интерес исследователей был в дальнейшем сосредоточен на частном случае этой модели в виде системы из трех дифференциальных уравнений с постоянными коэффициентами [18].

Следует заметить, что публикуемые статистические данные о заболеваемости COVID-19 содержат ежедневное число новых случаев заболевания, ежедневное количество выздоровевших и умерших, общее количество заболевших и общее количество выздоровевших и умерших с начала эпидемии. На основании этих данных можно вычислить текущее число болеющих людей (активных случаев болезни). Фактически статистические данные содержат значения временных рядов притока (новых случаев заболевания)  $x_{inf}(t)$  и оттока (общее число выздоровевших и умерших)  $x_{of}(t)$  в системе, текущее число элементов в которой X(t) равно численности группы инфицированных (болеющих людей) в момент времени t.

Вместо трехкамерной модели SIR рассмотрим модель, описываемую пр<br/>и $t>t_0$ системой дискретных уравнений следующего вида:

$$I(t) = C(t) - R(t),$$
(11)

$$C(t) = \left(1 + \frac{r_{\inf}(t)}{100}\right) C(t-1),$$
(12)

$$R(t) = \left(1 + \frac{r_{\rm of}(t)}{100}\right) R(t-1), \tag{13}$$

$$I(t_0) = C(t_0) = R(t_0) = 0.$$

В этой модели переменная C(t) характеризует интегральный приток (общее количество) новых случаев заболевания (Confirmed Cases), а переменная R(t) — интегральный отток суммарного количества выздоровевших и умерших (Removed), начиная с момента времени  $t_0 + 1$  до момента времени t (включительно):

$$C(t) = \sum_{t=t_0+1}^{t} x_{inf}(t),$$
$$R(t) = \sum_{t=t_0+1}^{t} x_{of}(t).$$

Параметрами модели являются процентный прирост интегрального объема притока (общего количества выявленных случаев заболевания)  $r_{inf}(t)$  и процентный прирост интегрального объема оттока (общего количества выздоровевших и умерших пациентов)  $r_{of}(t)$ , меняющиеся во времени.

Будем называть модель динамики заболевания (11)–(13) интегральной моделью притока и оттока болеющих людей.

**3.2.** Результаты вычислительных экспериментов. Рассмотрим результаты вычислительных экспериментов по построению ретроспективных прогнозов состояния динамических систем с использованием прогнозов линейных по времени трендов стохастических параметров интегральной модели и классического метода ARIMA.

Приведем сначала пример применения интегральной модели притока и оттока болеющих людей для прогнозирования динамики заболевания COVID-19 в Москве и Санкт-Петербурге в период первой волны эпидемии при прогнозировании динамики процентных приростов интегральных объемов притока с помощью линейных трендов [16] этих параметров.

Таблица 1. Ретроспективные прогнозы количества болеющих людей в Москве в период первой волны эпидемии COVID-19 в 2020 г. при использовании линейных трендов процентных приростов интегральных объемов притока и оттока

| Дата      | ИП,        | Прирост | ИО,  | Прирост | I(t),      | I(t), чел. | Точность    |
|-----------|------------|---------|------|---------|------------|------------|-------------|
|           | чел.       | ИП, %   | чел. | ИО, %   | чел.       | (прогноз)  | прогноза, % |
| 1         | 2          | 3       | 4    | 5       | 6          | 7          | 8           |
| 14 апреля | $13 \ 002$ | 12.93   | 1111 | 20.89   | 11 891     |            |             |
| 15 апреля | 14 776     | 13.64   | 1311 | 18.00   | $13 \ 465$ |            |             |
| 16 апреля | 16  146    | 9.27    | 1507 | 14.95   | 14  639    |            |             |
| 17 апреля | 18  105    | 12.13   | 1644 | 9.09    | $16 \ 461$ |            |             |
| 18 апреля | 20  754    | 14.63   | 1827 | 11.13   | $18 \ 927$ |            |             |
| 19 апреля | $24 \ 324$ | 17.20   | 1939 | 6.13    | $22 \ 385$ |            |             |
| 20 апреля | $26 \ 350$ | 8.33    | 2042 | 5.31    | 24  308    |            |             |
| 21 апреля | $29 \ 433$ | 11.70   | 2290 | 12.14   | 27  143    |            |             |
| 22 апреля | $31 \ 981$ | 8.66    | 2528 | 10.39   | 29  453    |            |             |
| 23 апреля | $33 \ 940$ | 6.13    | 2736 | 8.23    | $31 \ 204$ |            |             |
| 24 апреля | 36 897     | 8.71    | 3060 | 11.84   | 33 837     |            |             |
| 25 апреля | 39 509     | 7.08    | 3413 | 11.54   | 36 096     |            |             |
| 26 апреля | 42  480    | 7.52    | 3579 | 4.86    | 38 901     |            |             |
| 27 апреля | $45 \ 351$ | 6.76    | 3959 | 10.62   | $41 \ 392$ |            |             |
| 28 апреля | $48 \ 426$ | 6.78    | 4609 | 16.42   | 43 817     |            |             |
| 29 апреля | 50 646     | 4.58    | 5156 | 11.87   | 45  490    |            |             |
| 30 апреля | 53 739     | 6.11    | 5746 | 11.44   | 47 993     |            |             |
| 1 мая     | $57 \ 300$ | 6.63    | 6424 | 11.80   | 50 876     | 50 876     | 100.00      |
| 2 мая     | 62  658    | 9.35    | 7069 | 10.04   | 55 589     | 53 813     | 96.81       |
| 3 мая     | 68 606     | 9.49    | 7758 | 9.75    | 60 848     | 56 793     | 93.34       |
| 4 мая     | $74 \ 401$ | 8.45    | 8337 | 7.46    | 66  064    | 59 802     | 90.52       |
| 5 мая     | 80 115     | 7.68    | 8686 | 4.19    | $71 \ 429$ | 62 827     | 87.96       |

Окончание табл. 1

| 1                  | 2           | 3    | 4                        | 5     | 6                | 7               | 8         |
|--------------------|-------------|------|--------------------------|-------|------------------|-----------------|-----------|
| 6 Mag              | 85.073      | 7 31 | 0324                     | 7 35  | 76 649           | 65.852          | 85.01     |
| 7 мая              | 02 676      | 7.01 | 10.132                   | 8.67  | 82 544           | 68 861          | 83 42     |
| 7 мал              | 08 522      | 6.31 | $10\ 152$<br>11\ 215     | 10.60 | 87 307           | 71 835          | 82.28     |
| о мая              | 90 022      | 0.31 | 11 210                   | 10.09 | 00 400           | 71 055          | 02.20     |
| 9 мая<br>10        | 104 189     | 5.75 | 13 789                   | 22.95 | 90 400           | 74 730          | 82.69     |
| 10 мая             | 109 740     | 5.33 | 14 858                   | 7.75  | 94 882           | 77 604          | 81.79     |
| 11 мая             | 115 909     | 5.62 | 18 946                   | 27.51 | 96 963           | 80 358          | 82.87     |
| 12 мая             | $121 \ 301$ | 4.65 | 20 821                   | 9.90  | $100 \ 480$      | MAPE            | = 13.24 % |
| 13 мая             | $126 \ 004$ | 3.88 | 22 738                   | 9.21  | $103 \ 266$      |                 |           |
| 14 мая             | 130 716     | 3.74 | $24 \ 617$               | 8.26  | $106 \ 099$      |                 |           |
| 15 мая             | $135 \ 464$ | 3.63 | $25 \ 920$               | 5.29  | 109 544          | 109 544         | 100.00    |
| 16 мая             | $138 \ 969$ | 2.59 | $27 \ 464$               | 5.96  | 111 505          | 112 873         | 98.77     |
| 17 мая             | 142 824     | 2.77 | 28 993                   | 5.57  | 113 831          | 116 069         | 98.03     |
| 18 мая             | $146 \ 062$ | 2.27 | 30  493                  | 5.17  | 115 569          | 119 114         | 96.93     |
| 19 мая             | 149  607    | 2.43 | $33 \ 147$               | 8.70  | $116 \ 460$      | 121 991         | 95.25     |
| 20 мая             | $152 \ 306$ | 1.80 | 38 662                   | 16.64 | 113 644          | 124 683         | 90.29     |
| 21 мая             | 155 219     | 1.91 | 42 476                   | 9.86  | 112 743          | 127 175         | 87.20     |
| 22 мая             | 158 207     | 1 93 | 45 449                   | 7.00  | 112758           | 129 450         | 85.20     |
| 22 Mar             | 161 307     | 2.00 | 40 347                   | 8 58  | 112 050          | 131 495         | 82.65     |
| 23 мая             | 163 013     | 1.56 | 51 833                   | 5.04  | 112 000          | 132 208         | 81.07     |
| 24 Max             | 166 472     | 1.50 | 51 655                   | 7.21  | 112 080          | 124 845         | 79.26     |
| 25 Mas             | 100 475     | 1.50 | 55 620<br>62 720         | 1.51  | 110 855          | 154 645<br>MADE | 10.00     |
| 20 Mag             | 109 303     | 1.70 | 63 729<br>60 641         | 14.58 | 105 574          | MAPE            | = 10.03 % |
| 27 мая             | 171 443     | 1.26 | 69 641<br>59 505         | 9.28  | 101 802          |                 |           |
| 28 мая             | 173 497     | 1.20 | 73 505                   | 5.55  | 99 992           |                 |           |
| 29 мая             | 175 829     | 1.34 | $77\ 055$                | 4.83  | 98 774           |                 |           |
| 30 мая             | $178 \ 196$ | 1.35 | 80 732                   | 4.77  | $97 \ 464$       |                 |           |
| 31 мая             | $180 \ 791$ | 1.46 | 82 656                   | 2.38  | 98  135          |                 |           |
| 1 июня             | $183 \ 088$ | 1.27 | 84 792                   | 2.58  | 98 296           |                 |           |
| 2 июня             | $185 \ 374$ | 1.25 | 90 893                   | 7.20  | 94  481          |                 |           |
| 3 июня             | $187 \ 216$ | 0.99 | $94 \ 339$               | 3.79  | 92 877           |                 |           |
| 4 июня             | $189\ 214$  | 1.07 | $97 \ 464$               | 3.31  | 91  750          | 91 750          | 100.00    |
| 5 июня             | $191 \ 069$ | 0.98 | $100 \ 164$              | 2.77  | 90  905          | 90582           | 99.64     |
| 6 июня             | $193 \ 061$ | 1.04 | $103 \ 295$              | 3.13  | 89 766           | $89\ 379$       | 99.57     |
| 7 июня             | $195 \ 017$ | 1.01 | 105 633                  | 2.26  | $89 \ 384$       | 88 147          | 98.62     |
| 8 июня             | 197 018     | 1.03 | $107 \ 317$              | 1.59  | 89 701           | 86 892          | 96.87     |
| 9 июня             | 198 590     | 0.80 | 112 766                  | 5.08  | 85 824           | 85 620          | 99.76     |
| 10 июня            | 199 785     | 0.60 | 116 618                  | 3 42  | 83 167           | 84 338          | 98.59     |
| 11 июня            | 201 221     | 0.00 | 118 907                  | 1.96  | 82 314           | 83 053          | 99.10     |
| 12 HOHS            | 201 221     | 0.72 | 121 211                  | 1.00  | 81 794           | 81 771          | 99.94     |
| 12 июня<br>13 нюня | 202 333     | 0.85 | $121\ 211$<br>$122\ 780$ | 1.34  | 81 630           | 80 500          | 08 60     |
| 14 шоня            | 204 428     | 0.74 | 122 109                  | 1.50  | 81 039           | 70 244          | 93.00     |
| 14 июня<br>15 mons | 205 905     | 0.12 | 124 972                  | 1.70  | 80 955           | 79 244          | 91.91     |
| 16 шоня            | 207 204     | 0.00 | 120 574                  | 1.20  | 80 090<br>70 180 | 76 013          | 90.08     |
| 16 июня<br>17      | 208 680     | 0.68 | 129 500                  | 2.31  | 79 180           | 70 811          | 97.01     |
| 1 июня             | 209 745     | 0.51 | 131 819                  | 1.79  | 77 926           | 75 645          | 97.07     |
| 18 июня<br>10      | 210 785     | 0.50 | 133 914                  | 1.59  | 76 871           | 74 523          | 96.94     |
| 19 июня            | 211 921     | 0.54 | 135 965                  | 1.53  | 75 956           | 73 449          | 96.70     |
| <b>20 июня</b>     | $212 \ 978$ | 0.50 | $138 \ 114$              | 1.58  | 74 864           | $72\ 429$       | 96.75     |
| 21 июня            | 213 946     | 0.45 | $139\ 153$               | 0.75  | 74 793           | 71 470          | 95.56     |
| 22 июня            | $215 \ 014$ | 0.50 | $140\ 287$               | 0.81  | 74 727           | 70 576          | 94.44     |
| 23 июня            | $216 \ 095$ | 0.50 | 142 891                  | 1.86  | 73 204           | $69\ 752$       | 95.28     |
| 24 июня            | 216 906     | 0.38 | $144 \ 925$              | 1.42  | $71 \ 981$       | 69 003          | 95.86     |
| 25 июня            | 217 791     | 0.41 | 145 863                  | 0.65  | $71 \ 928$       | $68 \ 333$      | 95.00     |
| 26 июня            | 218 604     | 0.37 | 147 885                  | 1.39  | $70 \ 719$       | 67 746          | 95.80     |
| 27 июня            | $219 \ 354$ | 0.34 | 149  757                 | 1.27  | 69  597          | $67\ 244$       | 96.62     |
| 28 июня            | $220 \ 071$ | 0.33 | 150 833                  | 0.72  | $69 \ 238$       | 66 831          | 96.52     |
| 29 июня            | 220 853     | 0.36 | 151 863                  | 0.68  | 68 990           | 66 508          | 96.40     |
| 30 июня            | 221 598     | 0.34 | 154  193                 | 1.53  | 67  405          | $66\ 278$       | 98.33     |
|                    | '           | -    | '                        |       |                  | MAPE            | = 2.71 %  |
|                    |             |      |                          |       |                  | D               | /0        |

В табл. 1 в столбцах 2–5 находятся фактические данные об интегральных объемах притока (ИП) и оттока (ИО), значениях их процентных приростов и количестве активных случаев в Москве, полученные из ежедневных отчетов Коммуникационного центра Правительства РФ по ситуации с коронавирусом, размещенных в открытом доступе на портале стопкоронавирус.рф. В столбце 7 представлены ретроспективные прогнозы количества болеющих людей, построенные при использовании линейных трендов процентных приростов интегральных объемов притока и оттока на основании статистики, предшествующей датам построения прогнозов 1 мая, 15 мая и 4 июня 2020 г., в столбце 8 — ежедневные абсолютные значения точности полученных прогнозов, а также МАРЕ — средняя абсолютная ошибка в процентах для соответствующего горизонта прогнозирования.

В табл. 2 приведены аналогичные данные для Санкт-Петербурга. Однако прогнозы количества активных случаев болезни (см. столбец 7) получены при использовании для прогнозирования процентных приростов притока и оттока модели ARIMA. Для этого были построены модели ARIMA отдельно для прогнозирования динамики изменения интегральных притока и оттока. Гиперпараметры моделей обновлялись при рассмотрении различных интервалов для моделирования. Так, для прогнозирования прироста интегрального притока в начале мая 2020 г. применялась модель ARIMA(7,1,7), для интервала прогнозирования с 1 по 30 июня 2020 г. — модель ARIMA(2,1,1). Для каждого горизонта прогнозирования также приведены точность прогноза и показатель MAPE.

| Пото      | ИΠ,      | Прирост | ИО,  | Прирост | I(t), | I(t), чел. | Точность    |
|-----------|----------|---------|------|---------|-------|------------|-------------|
| дата      | чел.     | ИП, %   | чел. | ИО, %   | чел.  | (прогноз)  | прогноза, % |
| 1         | 2        | 3       | 4    | 5       | 6     | 7          | 8           |
| 14 апреля | 799      | 17.85   | 82   | 0.00    | 717   |            |             |
| 15 апреля | 929      | 16.27   | 100  | 21.95   | 829   |            |             |
| 16 апреля | 1083     | 16.58   | 117  | 17.00   | 966   |            |             |
| 17 апреля | 1507     | 39.15   | 138  | 17.95   | 1369  |            |             |
| 18 апреля | 1646     | 9.22    | 240  | 73.91   | 1406  |            |             |
| 19 апреля | 1760     | 6.93    | 247  | 2.92    | 1513  |            |             |
| 20 апреля | 1846     | 4.89    | 249  | 0.81    | 1597  |            |             |
| 21 апреля | 1973     | 6.88    | 291  | 16.87   | 1682  |            |             |
| 22 апреля | 2267     | 14.90   | 341  | 17.18   | 1926  |            |             |
| 23 апреля | 2458     | 8.43    | 385  | 12.90   | 2073  |            |             |
| 24 апреля | 2711     | 10.29   | 431  | 11.95   | 2280  |            |             |
| 25 апреля | 2926     | 7.93    | 483  | 12.06   | 2443  |            |             |
| 26 апреля | 3077     | 5.16    | 516  | 6.83    | 2561  |            |             |
| 27 апреля | 3238     | 5.23    | 516  | 0.00    | 2722  |            |             |
| 28 апреля | 3436     | 6.11    | 571  | 10.66   | 2865  |            |             |
| 29 апреля | 3726     | 8.44    | 737  | 29.07   | 2989  |            |             |
| 30 апреля | 4062     | 9.02    | 808  | 9.63    | 3254  |            |             |
| 1 мая     | 4411     | 8.59    | 812  | 0.50    | 3599  | 3599       | 100.00      |
| 2 мая     | 4734     | 7.32    | 910  | 12.07   | 3824  | 3693       | 96.59       |
| 3 мая     | 5029     | 6.23    | 1095 | 20.33   | 3934  | 3858       | 98.07       |
| 4 мая     | 5346     | 6.30    | 1234 | 12.69   | 4112  | 4004       | 97.37       |
| 5 мая     | 5572     | 4.23    | 1505 | 21.96   | 4067  | 4138       | 98.25       |
| 6 мая     | $5\ 884$ | 5.60    | 1572 | 4.45    | 4312  | 4265       | 98.91       |
| 7 мая     | 6190     | 5.20    | 1596 | 1.53    | 4594  | 4387       | 95.50       |
| 8 мая     | 6565     | 6.06    | 1645 | 3.07    | 4920  | 4506       | 91.59       |
| 9 мая     | 6990     | 6.47    | 1715 | 4.26    | 5275  | 4623       | 87.64       |

Таблица 2. Ретроспективные прогнозы количества болеющих людей в Санкт-Петербурге в период первой волны эпидемии COVID-19 в 2020 г. при использовании ARIMA

Окончание табл. 2

| 1                  | 2                    | 3    | 4                    | 5     | 6                       | 7                      | 8                 |
|--------------------|----------------------|------|----------------------|-------|-------------------------|------------------------|-------------------|
| 10 мая             | 7404                 | 5.92 | 1727                 | 0.70  | 5677                    | 4739                   | 83.47             |
| 11 мая             | 7711                 | 4.15 | 1737                 | 0.58  | 5974                    | 4854                   | 81.25             |
| 12 мая             | 8050                 | 4.40 | 1842                 | 6.04  | 6208                    | MAP                    | ${ m E}=7~\%$     |
| 13 мая             | 8485                 | 5.40 | 1911                 | 3.75  | 6574                    |                        |                   |
| 14 мая             | 8945                 | 5.42 | 1968                 | 2.98  | 6977                    |                        |                   |
| 15 мая             | 9486                 | 6.05 | 2079                 | 5.64  | 7407                    | 7407                   | 100.00            |
| 16 мая             | 10 011               | 5.53 | 2189                 | 5.29  | 7822                    | 7710                   | 98.57             |
| 17 мая             | $10 \ 462$           | 4.51 | 2260                 | 3.24  | 8202                    | 8075                   | 98.45             |
| 18 мая             | 10  887              | 4.06 | 2299                 | 1.73  | 8588                    | 8437                   | 98.24             |
| 19 мая             | $11 \ 340$           | 4.16 | 2367                 | 2.96  | 8973                    | 8796                   | 98.03             |
| 20 мая             | 11  795              | 4.01 | 2579                 | 8.96  | 9216                    | 9152                   | 99.31             |
| 21 мая             | $12 \ 203$           | 3.46 | 2765                 | 7.21  | 9438                    | 9506                   | 99.28             |
| 22 мая             | 12 592               | 3.19 | 2966                 | 7.27  | 9626                    | 9856                   | 97.61             |
| 23 мая             | 12  955              | 2.88 | 3237                 | 9.14  | 9718                    | $10\ 203$              | 95.01             |
| 24 мая             | $13 \ 339$           | 2.96 | 3585                 | 10.75 | 9754                    | 10548                  | 91.86             |
| 25 мая             | $13 \ 713$           | 2.80 | 3728                 | 3.99  | 9985                    | 10 889                 | 90.95             |
| 26 мая             | $14 \ 076$           | 2.65 | 3894                 | 4.45  | $10\ 182$               | MAP                    | $\mathrm{E}=5~\%$ |
| 27 мая             | $14 \ 463$           | 2.75 | 4616                 | 18.54 | 9847                    |                        |                   |
| 28 мая             | 14 846               | 2.65 | 4950                 | 7.24  | 9896                    |                        |                   |
| 29 мая             | $15 \ 215$           | 2.49 | 5291                 | 6.89  | 9924                    |                        |                   |
| 30 мая             | 15 580               | 2.40 | 5564                 | 5.16  | $10\ 016$               |                        |                   |
| 31 мая             | 15 949               | 2.37 | 5884                 | 5.75  | $10\ 065$               |                        |                   |
| 1 июня             | $16 \ 313$           | 2.28 | 5961                 | 1.31  | $10 \ 352$              |                        |                   |
| 2 июня             | 16 689               | 2.30 | 6231                 | 4.53  | $10\ 458$               |                        |                   |
| 3 июня             | $17\ 069$            | 2.28 | 6571                 | 5.46  | $10 \ 498$              |                        |                   |
| 4 июня             | 17 444               | 2.20 | 6959                 | 5.90  | 10 485                  | $10 \ 485$             | 100.00            |
| 5 июня             | 17 822               | 2.17 | 7367                 | 5.86  | $10 \ 455$              | 10 709                 | 97.57             |
| 6 июня             | 18 169               | 1.95 | 7808                 | 5.99  | $10 \ 361$              | 10 816                 | 95.61             |
| 7 июня             | 18 509               | 1.87 | 8136                 | 4.20  | 10 373                  | 10 924                 | 94.68             |
| 8 июня             | 18 835               | 1.76 | 8307                 | 2.10  | 10 528                  | 11 035                 | 95.18             |
| 9 июня<br>10       | 19 153               | 1.69 | 8534                 | 2.73  | 10 619                  | 11 148                 | 95.02             |
| 10 июня            | 19 466               | 1.63 | 9003                 | 5.50  | 10 463                  | 11 262                 | 92.36             |
| 11 июня            | 19 769               | 1.56 | 9384                 | 4.23  | 10 385                  | 11 379                 | 90.43             |
| 12 июня<br>12      | 20 043               | 1.39 | 9837                 | 4.83  | 10 206                  | 11 497                 | 87.35             |
| 13 июня<br>14      | 20 305               | 1.31 | 10 130               | 2.98  | 10 175                  | 11 010                 | 80.83             |
| 14 июня            | 20 561               | 1.26 | 10 274               | 1.42  | 10 287                  | 11 738                 | 85.90             |
| 15 июня            | 20 813               | 1.23 | 10 374               | 0.97  | $10\ 439$<br>10 287     | 11 801                 | 80.38             |
| 10 июня<br>17 шоня | 21 047               | 1.12 | 11 414               | 2.70  | 10 387                  | 11 900                 | 77.19             |
| 17 июня<br>18 июня | 21 275               | 1.08 | 11 414               | 5.83  | 9601                    | 12 112<br>12 220       | 70.15             |
| 10 mong            | 21 500               | 1.05 | 12 060               | 7 20  | 9420<br>8770            | 12 259                 | 70.13<br>58.07    |
| 19 июня<br>20 нюня | 21 754               | 1.00 | 12 904<br>13 770     | 6.20  | 8187                    | 12 309                 | JO.97<br>47 33    |
| 20 июня<br>21 июня | $21 \ 900$<br>22 105 | 1.07 | 1/ 303               | 3.80  | 7802                    | 12 433                 | 30.05             |
| 21 июня<br>22 нюня | 22 130               | 0.08 | 14 516               | 1.40  | 7806                    | $12 \ 0.051$<br>12 765 | 38 34             |
| 22 июня<br>23 июня | 22 412<br>22 632     | 0.98 | $14 \ 510$<br>14 772 | 1.45  | 7860                    | 12 705                 | 35.89             |
| 24 июня            | 22 850               | 0.96 | 15 453               | 4.61  | 7397                    | 13 035                 | 23 78             |
| 25 июня            | 23 071               | 0.97 | 16 061               | 3.93  | 7010                    | $13\ 172$              | 12.09             |
| 26 июня            | 23 294               | 0.97 | 16 503               | 2.75  | 6791                    | 13 311                 | 4.00              |
| 27 июня            | 23518                | 0.96 | $17\ 276$            | 4.68  | 6242                    | 13 450                 | 0.00              |
| 28 июня            | 23735                | 0.92 | 17 895               | 3.58  | 5840                    | 13591                  | 0.00              |
| 29 июня            | 23 954               | 0.92 | 18 161               | 1.49  | 5793                    | 13732                  | 0.00              |
| 30 июня            | $24 \ 207$           | 1.06 | 18 446               | 1.57  | 5761                    | $13\ 875$              | 0.00              |
|                    |                      |      |                      | 1     | $\mathrm{MAPE} = 45~\%$ |                        |                   |

На рисунке представлены результаты моделирования для Москвы и Санкт-Петербурга.

При использовании краткосрочных прогнозов линейных трендов процентных приростов ошибка МАРЕ при оценке будущего количества болеющих людей для

Вестник СПбГУ. Прикладная математика. Информатика... 2024. Т. 20. Вып. 2

Число активных случаев



а

Puc. 1. Фактические и расчетные траектории изменения числа активных случаев заболевания COVID-19 в Москве (a) и Санкт-Петербурге (б) на рассматриваемых интервалах прогнозирования (2020 г.)
 Количество активных случаев: 1 — фактическое, 2 — прогноз с помощью линейных трендов, 3 — прогноз, модель ARIMA.

Москвы в периоды 1–11 и 15–20 мая 2020 г. первой волны составила 13.24 и 10.63 % соответственно. Показатели для модели ARIMA были равны 18 и 10 % соответственно. При увеличении горизонта прогнозирования до 27 дней (период с 4 по 30 июня 2020 г.)

130

прогнозы линейных трендов показали более высокие результаты — опибка МАРЕ составила 2.7 % против 10 % при применении модели ARIMA. Схожие результаты были получены и при рассмотрении ситуации в Санкт-Петербурге. Ошибка краткосрочных прогнозов при оценке с помощью линейных трендов не превышала 5.6 %, а модели ARIMA — не более 7 %. В случае более далекого горизонта прогнозирования (27 дней) ошибка модели ARIMA возрастала до 45 %, в то время как при использовании модели оценки линейных трендов процентных приростов MAPE = 3.6 %.

Таким образом, следует отметить, что и для Москвы, и для Санкт-Петербурга при коротких горизонтах прогнозирования как модель притока и оттока, так и модель ARIMA показывали схожие результаты. При этом при увеличении интервала прогнозирования опшибка модели ARIMA начинала нарастать, а модель оценки линейных трендов стохастических параметров интегральной модели притока и оттока демонстрировала значительно более высокую точность.

3.3. Прогнозирование динамики численности населения. Для прогнозирования численности населения Земли и отдельных стран построим интегральную модель динамики численности населения. Временные ряды ежегодных значений количества родившихся детей B(t) и умерших людей D(t), формирующих приток и отток в систему народонаселения Земли, содержатся в базе данных ООН [19]. При построении модели следует дополнительно учесть отток населения за счет чистой миграции NM(t). Систему народонаселения страны обозначим N, численность ее элементов — N(t). Приток в систему N обеспечивает годовая рождаемость B(t), отток из системы DNM(t) равен D(t) + NM(t).

Тогда система дискретных уравнений, описывающих динамику численности населения N(t), будет иметь следующий вид:

$$N(t) = N(t_0) + B_{\rm int}(t) - DNM_{\rm int}(t),$$
(14)

$$B_{\rm int}(t) = \left(1 + \frac{r_{\rm inf}(t)}{100}\right) B_{\rm int}(t-1), \tag{15}$$

$$DNM_{\rm int}(t) = \left(1 + \frac{r_{\rm of}(t)}{100}\right) DNM_{\rm int}(t-1),\tag{16}$$

где

$$B_{\text{int}}(t) = \sum_{t_0+1}^{t} B(t),$$
$$DNM_{\text{int}}(t) = \sum_{t_0+1}^{t} DNM(t).$$

Результаты моделирования и прогнозирования динамики численности населения Земли в целом представлены в статье [16], а численности населения двух стран Западной Африки — в [20]. Важными особенностями полученных результатов применения модели (14)–(16) при прогнозировании численности населения Земли и отдельно взятых стран являются достаточно высокая точность ретроспективного прогнозирования и достаточно хорошо предсказуемая будущая динамика характеристики динамического баланса рассмотренных демографических процессов. Следует отметить, что в процессе вычислительных экспериментов по ретроспективному прогнозированию интегральных объемов притока и оттока значения характеристики динамического баланса, рассчитанные на основе полученных прогнозов, практически полностью совпадают с фактическими.

Вестник СПбГУ. Прикладная математика. Информатика... 2024. Т. 20. Вып. 2

4. Заключение. Описанная в работе интегральная модель притока и оттока динамической системы может быть использована при прогнозировании динамики достаточно широкого класса процессов со стохастическими параметрами. Сформулированный общий принцип динамического баланса систем притока и оттока, а также наличие у системы свойства интервальной динамической сбалансированности интегральных объемов притока и оттока вместе со свойством монотонного убывания значений процентных приростов этих объемов позволяют обеспечить высокую точность прогнозирования динамики таких систем на достаточно продолжительных временных горизонтах.

Приведенные результаты ретроспективного прогнозирования распространения эпидемии COVID-19 на примере мегаполисов, к каким относятся Москва и Санкт-Петербург, могут быть положены в основу создания аналитической системы для обеспечения мероприятий органов здравоохранения по борьбе с эпидемиями как на общенациональном, так и на региональном уровне. Применение разработанной методики построения линейных трендов значений процентных приростов интегральных объемов притока и оттока вместе с моделью ARIMA дает возможность получения достаточно высокой точности будущей динамики основных переменных рассматриваемых процессов. Однако, как показали проведенные эксперименты, использование линейных трендов имеет существенные преимущества в точности прогнозирования на продолжительных горизонтах времени. Эта методика для построения прогнозов динамики численности населения Земли, ее стран и регионов также хорошо зарекомендовала себя в процессе проведения численных экспериментов. Перспективной задачей будущих исследований является расширение класса динамических процессов и систем притока и оттока, для которых с помощью предложенной модели можно будет обеспечить приемлемый уровень точности прогнозирования будущей динамики таких процессов и систем.

#### Литература

1. Moftakhar L., Seif M., Safe M. S. Exponentially increasing trend of infected patients with COVID-19 in Iran: a comparison of neural network and ARIMA forecasting models // Iran Journal of Public Health. 2020. Vol. 9. P. 92–100.

2. Ahmar A. S., del Val E. B. SutteARIMA: short-term forecasting method, a case: COVID-19 and stock market in Spain // Science of the Total Environment. 2020. Vol. 729. Art. N 138883.

3. Chaudhry R. M., Hanif A., Chaudhary M., Minhas S. 2<sup>nd</sup>, Mirza K., Ashraf T., Gilani S. A., Kashif M. Coronavirus disease 2019 (COVID-19): Forecast of an emerging urgency in Pakistan // Cureus. 2020. Vol. 12. N 5. Art. N e8346.

4. Tandon H., Ranjan P., Chakraborty T., Suhag V. Coronavirus (COVID-19): Arima based timeseries analysis to forecast near future and the effect of school reopening in India // Journal of Health Management. 2022. Vol. 24. Iss. 3. P. 373–388.

5. Earnest A., Chen M. I., Ng D., Leo Y. S. Using autoregressive integrated moving average (ARIMA) models to predict and monitor the number of beds occupied during a SARS outbreak in a tertiary hospital in Singapore // BMC Health Services Research. 2005. Vol. 5. Art. N 36.

6. Li X. J., Kang D. M., Cao J., Wang J. Z. A time series model in incidence forecasting of hemorrhagic fever with renal syndrome // Journal of Shandong University (Health Sciences). 2008. Vol. 46. N 5. P. 547–549.

7. Heisterkamp S. H., Dekkers A. L., Heijne J. C. Automated detection of infectious disease outbreaks: hierarchical time series models // Statistics in Medicine. 2003. Vol. 25. N 24. P. 4179–96.

8. Zhang G. P. Time series for ecasting using a hybrid ARIMA and neural network model // Neurocomputing. 2003. Vol. 50. P. 159–175.

9. De Beer J. Projecting age-specific fertility rates by using time-series methods // European Journal of Population. 1990. Vol. 5. N 4. P. 315–346.

10. Abonazel M., Darwish N. Forecasting confirmed and recovered COVID-19 cases and deaths in Egypt after the genetic mutation of the virus: ARIMA Box-Jenkins approach // Communications in Mathematical Biology and Neuroscience. 2022. Vol. 2022. Art. N 17.

11. Gecili E., Ziady A., Szczesniak R. D. Forecasting COVID-19 confirmed cases, deaths and recoveries: revisiting established time series modeling through novel applications for the USA and Italy // PLoS One. 2021. Vol. 16. N 1. Art. N e0244173.

12. Singh S., Parmar K. S., Makkhan S. J. S., Kaur J., Peshoria S., Kumar J. Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries // Chaos, Solitons and Fractals. 2020. Vol. 139. Art. N 110086.

13. Aditya S. C. B., Darmawan W., Nadia B. U., Hanafiah N. Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET // Procedia Computer Science. 2021. Vol. 179. P. 524–532.

14. Duong N., Phuong Th. L., Nhu Q. D., Binh L., Ai L. C., Hong D. P. Predicting the pandemic COVID-19 using ARIMA model // VNU Journal of Science: Mathematics—Physics. 2020. Vol. 36. N 4. Art. N 4492.

15. Claris S., Peter N. ARIMA model in predicting of COVID-19 epidemic for the Southern Africa region // African Journal of Infectious Diseases. 2022. Vol. 17. N 1. P. 1–9.

16. Захаров В. В. Принцип динамического баланса демографического процесса и пределы роста населения Земли // Докл. РАН. Математика, информатика, процессы управления. 2023. Т. 15. С. 108–114. https://doi.org/10.31857/S2686954323600301

17. Kermack W. O., McKendrick A. G. A contribution to the mathematical theory of epidemics // Proceedings of the Royal Society A. 1927. Vol. 115. P. 700–721.

18. Anderson R. M., May R. M. Infectious diseases of humans: Dynamics and control. Oxford: Oxford University Press, 1991. 757 p.

19. United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Methodology of the United Nations population estimates and projections. New York: United Nations Publ., 2022. 64 p.

20. Захаров В. В., Ндиайе С. М. Прогнозирование численности населения и динамические игры против природы // Математическая теория игр и ее приложения. 2024. Т. 16. № 1. С. 17–37.

Статья поступила в редакцию 9 января 2024 г. Статья принята к печати 12 марта 2024 г.

Контактная информация:

Балыкина Юлия Ефимовна — канд. физ.-мат. наук, доц.; j.balykina@sbpu.ru

Захаров Виктор Васильевич — д-р физ.-мат. наук, проф.; v.zaharov@spbu.ru

#### Integral inflow and outflow model and its applications<sup>\*</sup>

Yu. E. Balykina<sup>1,2</sup>, V. V. Zakharov<sup>1</sup>

- <sup>1</sup> St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
- $^2$  Admiral Makarov State University of Maritime and Inland Shipping, 5/7, Dvinskaya ul., St. Petersburg, 198035, Russian Federation

For citation: Balykina Yu. E., Zakharov V. V. Integral inflow and outflow model and its applications. *Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes*, 2024, vol. 20, iss. 2, pp. 121–135. https://doi.org/10.21638/spbu10.2024.201 (In Russian)

The article describes a general integral model of the inflow and outflow of a dynamic system, the parameters of which are stochastic in nature. For this type of dynamic systems, the general principle of dynamic balance is formulated, and the concepts of interval dynamic balance of integral volumes of inflow and outflow as well as the concept of dynamic balance

<sup>\*</sup> This research was supported by the Russian Science Foundation, project N 23-21-10049 (https://rscf.ru/project/23-21-10049/), and Saint Petersburg Science Foundation.

characteristic are introduced. The class of stochastic dynamic processes and systems of inflow and outflow that satisfy the principle of dynamic balance is quite wide (the spread of viral epidemics and the dynamics of morbidity in medicine, processes of changes in the size and structure of the population in demography, the dynamics of supply and demand in the economy, etc.). The possibilities of using the proposed model for constructing short-term and long-term forecasts are demonstrated using examples of the spread of the COVID-19 epidemic in Moscow and Saint Petersburg, as well as using the example of forecasting the growth of the Earth population and population of countries. The results of computational experiments on constructing retrospective forecasts of the state of dynamic systems using the method of dynamic trends of stochastic parameters of the integral model and using the classical ARIMA method are presented. A comparative analysis of forecasting accuracy is provided.

*Keywords*: dynamic systems of inflow and outflow, principle of dynamic balance, dynamic balance characteristic, mathematical modeling, forecasting.

#### References

1. Moftakhar L., Seif M., Safe M. S. Exponentially increasing trend of infected patients with COVID-19 in Iran: a comparison of neural network and ARIMA forecasting models. *Iran Journal of Public Health*, 2020, vol. 9, pp. 92–100.

2. Ahmar A. S., del Val E. B. SutteARIMA: short-term forecasting method, a case: COVID-19 and stock market in Spain. *Science of the Total Environment*, 2020, vol. 729, art. no. 138883.

3. Chaudhry R. M., Hanif A., Chaudhary M., Minhas S. 2<sup>nd</sup>, Mirza K., Ashraf T., Gilani S. A., Kashif M. Coronavirus Disease 2019 (COVID-19): Forecast of an Emerging urgency in Pakistan. *Cureus*, 2020, vol. 12, iss. 5, art. no. e8346.

4. Tandon H., Ranjan P., Chakraborty T., Suhag V. Coronavirus (COVID-19): Arima based timeseries analysis to forecast near future and the effect of school reopening in India. *Journal of Health Management*, 2022, vol. 24, iss. 3, pp. 373–388.

5. Earnest A., Chen M. I., Ng D., Leo Y. S. Using autoregressive integrated moving average (ARIMA) models to predict and monitor the number of beds occupied during a SARS outbreak in a tertiary hospital in Singapore. *BMC Health Services Research*, 2005, vol. 5, art. no. 36.

6. Li X. J., Kang D. M., Cao J., Wang J. Z. A time series model in incidence forecasting of hemorrhagic fever with renal syndrome. *Journal of Shandong University (Health Sciences)*, 2008, vol. 46, no. 5, pp. 547–549.

7. Heisterkamp S. H., Dekkers A. L., Heijne J. C. Automated detection of infectious disease outbreaks: hierarchical time series models. *Statistics in Medicine*, 2003, vol. 25, no. 24, pp. 4179–96.

8. Zhang G. P. Time series forecasting using a hybrid ARIMA and neural network model. *Neurocomputing*, 2003, vol. 50, pp. 159–175.

9. De Beer J. Projecting age-specific fertility rates by using time-series methods. *European Journal of Population*, 1990, vol. 5, no. 4, pp. 315–346.

10. Abonazel M., Darwish N. Forecasting confirmed and recovered COVID-19 cases and deaths in Egypt after the genetic mutation of the virus: ARIMA Box-Jenkins approach. *Communications in Mathematical Biology and Neuroscience*, 2022, vol. 2022, art. no. 17.

11. Gecili E., Ziady A., Szczesniak R. D. Forecasting COVID-19 confirmed cases, deaths and recoveries: revisiting established time series modeling through novel applications for the USA and Italy. *PLoS One*, 2021, vol. 16, no. 1, art. no. e0244173.

12. Singh S., Parmar K. S., Makkhan S. J. S., Kaur J., Peshoria S., Kumar J. Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries. *Chaos, Solitons and Fractals,* 2020, vol. 139, art. no. 110086.

13. Aditya S. C. B., Darmawan W., Nadia B. U., Hanafiah N. Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET. *Proceedia Computer Science*, 2021, vol. 179, pp. 524–532.

14. Duong N., Phuong Th. L., Nhu Q. D., Binh L., Ai L. C., Hong D. P. Predicting the pandemic COVID-19 using ARIMA model. *VNU Journal of Science: Mathematics — Physics*, 2020, vol. 36, no. 4, art. no. 4492.

15. Claris S., Peter N. ARIMA model in predicting of COVID-19 epidemic for the Southern Africa region. *African Journal of Infectious Diseases*, 2022, vol. 17, no. 1, pp. 1–9.

16. Zaharov V. V. Printcip dinamicheskogo balansa demograficheskogo processa i predely rosta zemli [Dynamic balance principle of the demographic process and the limits of earth population growth]. *Papers of Russian Academy of Sciences*, 2023, vol. 15, pp. 108–114. https://doi.org/10.31857/S2686954323600301 (In Russian)

17. Kermack W. O., McKendrick A. G. A contribution to the mathematical theory of epidemics. *Proceedings of the Royal Society A*, 1927, vol. 115, pp. 700–721.

18. Anderson R. M., May R. M. Infectious diseases of humans: Dynamics and control. Oxford, Oxford University Press, 1991, 757 p.

19. United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Methodology of the United Nations population estimates and projections. New York, United Nations Publ., 2022, 64 p.

20. Zaharov V. V., Ndiaye S. M. Prognozirovanie chislennosti naseleniya i dinamicheskie igry protiv prirody [Population growth forecasting and dynamic games against nature]. *Mathematical Game Theory* and its Applications, 2024, vol. 16, no. 1, pp. 17–37. (In Russian)

Received: January 9, 2024. Accepted: March 12, 2024.

Authors' information:

Yulia E. Balykina – PhD in Physics and Mathematics, Associate Professor; j.balykina@spbu.ru

Victor V. Zaharov - Dr. Sci. in Physics and Mathematics, Professor; v.zaharov@sbpu.ru