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In this paper, we present some methods to solve second-order and fourth-order boundary
value problems. First, we start by proving some new fixed point theorems in double controlled
metric-like space. Further, we introduce the notion of G¢-contraction in the same space
endowed with a graph and obtain a result on fixed points for G¢-contraction. As an
application of the obtained results, we implemented the existence of solutions for some classes
of second-order and fourth-order boundary value problems.
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1. Introduction. Due to its wide applicability, fixed point theory has received signi-
ficant attention from researchers. Indeed, fixed point theorems are powerful tools in many
areas of mathematics, telecommunication, physics, chemical graph theory, population bio-
logy [1-6]. The success of this tool has even reached new disciplines such as machine
learning [7]. On the other hand, fixed point theorems offer a powerful method to ensure
the existence of a solution to differential, integral and fractional differential equations
under certain conditions [6, 8-15]. In the same context, the notion of metric spaces has
been developed and generalized by many authors [13, 14, 16-26]. In [27], the authors
proposed a new generalization of metric spaces called the double controlled metric spaces.
Recently, Mlaiki [28], developed an extension named double controlled metric-like spaces
(DCMLS), by supposing that the “self-distance” may not be zero.

In this article, we present selected applications of fixed point theory to prove the
existence of a solution to certain types of differential equations. Also, we propose a fixed
point result in DCMLS with a graph.

The rest of the paper is structured as follows. In Section 2 we state some definitions
and results regarding double controlled metric-like spaces. In Section 3 we obtain the
new fixed point results on double controlled metric-like spaces for an a-admissible maps
(see Samet et al. [29]). In Section 4, using the ideas of Jachymski in [30], we give new
results about fixed points on double controlled metric-like endowed with a graph. Also,
we endowed the double controlled metric-like spaces by a graph G. Hence, the graph G
is considered as weighted graph when the distance between its vertices is calculated by
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the double controlled metric-like. We introduce the definition of called the G¢:-mapping.
We establish a necessary conditions for this mapping and the controlled functions of the
metric in order to prove existence and uniqueness of the fixed point (see Theorem 2 on
p. 62). In Section 5, inspired by the results of Jleli and Samet [31], we present the fixed
point results on double controlled metric-like for ©-contractions. In Section 6, we discuss
the existence of a solution of second order differential equation. Next, in Section 7, using
our results, we solve a fourth-order differential equation.

2. Preliminaries. We begin by listing some fundamental definitions and properties
of the double controlled metric-like spaces.

Defintion 1 [28]. Let X be a nonempty set. Let 1, ¥2 : X x X — [1,400) be
the mappings and let d : X x X — [0,+00) be a function that satisfies the following
assumptions:

(der) d(p,q) =

(des) d(p,q) = d(a, D).

(des) d(p,q) < V1(p,)d(p, ) + Da(r, q)d(r, ),
for all p,q,r € X.

The pair (X, d) is called a double controlled metric-like space DCMLS, and the func-
tion d is called a DCML.

The definition and convergence of Cauchy sequences in DCMLS is presented by the
definition.

Defintion 2 [28]. Let (X, d) be a DCMLS and {r,},>0 be a sequence in X:

(1) the sequence {r,} converges to some r in X, if and only if nglfoo d(rp,r) =d(r,r);

0 implies p = g,
d
9

(2) the sequence {r,} is Cauchy, if lim d(rp,rn) exists and is finite;
n,m—+400

(3) the space (X,d) is complete if every Cauchy sequence {r,} in X is convergent
that is
lim d(rp,r) =d(r,r)= Ulm d(ry,rm).

n—-+oo 7, Mm—+00

Defintion 3. Let (X, d) be a DCMLS. Let r € X and ¢ > 0:
(i) the open ball B(r,d) defined by

B(r,6) ={s e X,|d(r,s) —d(r,r)| < d};

(%) the mapping h : X — X is called continuous at r € X, if for each § > 0 there
exists v > 0 such that h(B,(r,v)) C B,(hr,?).

Clearly, if a mapping h is continuous at u in the space (X, d), then u,, — u implies
that hu, — hu as n — +oo, that is

lim d(huy, hu) = d(hu, hu).
n—-+oo
For more details and examples about the DCMLS, we refer to [28].

Remark 1. Note that Abdeljawad et al. [27] gave examples showing that doubled
controlled metric space is a true generalization of controlled metric, b-metric and metric
spaces (see examples in [28]).

3. Fixed point result in double controlled metric-like spaces for an a-ad-
missible map. In this Section, we state a new fixed point result in the DCMLS and next,
in Section 6, we will use the obtained result to solve a second-order differential equations.
In the sequel, we state the following definitions.

Definition 4. Let v: X — X be a map and let o : X x X — [0, +00). We say that
~ is a-admissible if, for all r,s € X, a(r,s) > 1 implies a(vyr,vys) > 1.

Bectuuk CII6I'Y. Ilpuknagunas maremaruka. VMudopmarnka... 2025. T. 21. Bemm. 1 59



Definition 5 [32]. Let v : X — X be a map and let a,k : X x X — [0,+00). We
say that 7 is a-admissible with respect to « if, for all r,s € X, a(r,s) > k(r, s) implies
a(yr,vs) = k(yr, vs).

We denote by Z a new family of mappings x : [0,400) — [0, +00) satisfying these
conditions:

(21) x is an upper semicontinuous mapping from the right;

(E2) x(r) < r for all r € (0, +00);

(Z5) x(0) = 0.

Example. Let the maps x1, X2, x3 : [0, +00) — [0, +00) defined by:

x1(t) = kt, t € [0,400), where k € (0,1);

x2(t) =In(1+1¢), t € [0, +00);

x3(t) = sin(t), ¢ € [0,+00). Then x1, x2, X3 € =.

Lemma. Let ¢ € Z and t € (0,400) then lim, 1o ¥"™(t) = 0, where Y™ is the n-th
iterate of 1.

P r o o f. From condition (Z3) we obtain

Y H(t) < (1), for all n € N.
So, the sequence {¢)"(t)} is decreasing. In other hand, we have
P"(t) =20, for all n € N.
Therefore, we conclude that there exists r € [0, +00) such that

r= lim ¥"(t).

n—-+oo

If » > 0, then from conditions (£;) and (Z3) we obtain,

r<lim sup Y (1) < () <7

n—-+o0o

It is contradiction, so, r = 0. 0
Theorem 1. Let (X,d) be a complete DCMLS and ¢ € Z. Suppose that f : X — X
is a continuous mapping and the following hypothesis hold:
(i) f is a-admissible with respect to k;
(1) if r,s € X and a(r,s) = k(r, s), then d(fr, fs) < (d(r,s));
(131) there exists ro € X such that a(ro, fro) = k(ro, fro).
We take r,, = ("rg and we suppose that we have

im 91 (ri,rig1) and  lm 9o(ri, rm) exist and finite. (1)
1—+00 1—+00

Then f has a fized point.
P roof Let rg be an element in X. We denote by r; = frg and we construct the
following sequence {r,} € X defined by

Tn+1 = frp, for allm € N.

Suppose that r,, # r,41 for all n € N, otherwise f has a fixed point. From condition (7)
we have
a(ro,m1) = a(ro, fro) = K(ro, fro)
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and taking in to account that f is a-admissible with respect to k we obtain that
a(ry,re) = alfro, fr1) = k(fro, fr1) = k(r1, r2).
By continuing this process, we obtain
a(rp,Tny1) = K(Tn, rme1), for all n € N.
From (i7) and the property of ¢, we obtain that
d(rp,rny1) = d(fro-1, fro) < Y(d(rn-1,m)) < d(rp—1,7y), for all n € N. (2)

Therefore, {d(ry,r,+1)} is a non-increasing sequence. By consequence, there exists r > 0
such that

nllgloo d(rp, rny1) =1

We claim that » = 0. Suppose that r > 0. Since 1 is upper semicontinuous from the right
using (2), we get

lm d(rn,rne1) =r <lim sup ¥(d(rn_1,ms)) <¥(r) <r,

n—-+00 n——+oo

which is a contradiction. Therefore,

lim d(rp, 1) = 0. (3)

n—-+4oo

Let ¢,j € N such that r; # r; for all ¢ # j. Suppose without loss of generality that ¢ < j.
Using the triangle inequality of the DCML, we get

d(ri,rj) < O1(ri, rip1)d(ri, rig1) + P2(rigr, 75)d(rig1,75) <
Yd(ri, riv1) + P2(rig1, )01 (Tig1, Tig2)d(Tig1, Tig2) +

+ Do (rig1,75)02(rige, rj)d(rige, rj) <

< Y1 (ri, Tiga

Jj—2 P
<Oi(ririp)dlr i) + Y | ] P2(resms) | %
p=i+1 \ g=i+1
-1
X 01 (rp, Tp1)d(rp, rpr1) + [ O2(rzsri)d(rs—1,my).
z=1+1

Using (1) and (3) we get that d(r;,r;) converges to 0 as i, j — +o0.

Thus, {r,} is a Cauchy sequence and then converges to some r € X. Due to the
continuity of f, we have

"= ngr-ir-loo Tl = ngr-ir-loo frnl - f’l".

Hence, r is a fixed point of f. O

Remark 2. It is known that every DCMLS is a metric space. But the converse is
not always true which allows us to conclude that the DCMLS is more general than metric
spaces. Given this fact, it follows that the previous theorem is a generalization of some
fixed point results obtained in metric spaces. We can cite the Theorem 12 in [33]. Indeed,
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in [33], the authors prove the existence of the fixed point in a complete metric spaces for
a-admissible mappings using the same contraction in our result.

4. Fixed point result in double controlled metric-like spaces endowed with
a graph. Now, we combine the fixed point and graph theory to provide our result. We start
by giving some basic notions of graph theory needed hereafter. According to Jachymski in
[30], we consider a DCMLS (X, d) endowed with a graph G defined by the set U = U(G)
of vertices coinciding with X and the set £ = E(G) of its edges. Assume that the graph
G has no parallel edges. Therefore, G can be identified with the pair (U, E'). Moreover,
the graph GG may be seen as a weighted graph. Indeed, the distance between vertices is
calculated by the d-double controlled metric-like considered as a weight for the associated
edge. For more details in graph theory, we refer to [30, 34].

Definition 6. Let (X, d) be a complete (DCMLS) with a graph G. The mapping ¢
is called a G¢-mapping if the following hypothesis hold:

(1) for all r, s € E(G), (r,s) € E(G) imply that ({r,(s) € E(G), (G-edge preserving);

(2) there exists a function ¢ : X — R bounded from below such that

d(CT, CS) < ((,D(’I") - ‘P(@))d(ﬁ S)a (4)
for all ({r,¢s) € E(G) or (r,s) € E(G).
Theorem 2. Let (X,d,G) be a complete (DCMLS) endowed with a graph G. Let
¢: X = X be a continuous G¢-mapping. Assume that there exists ro € X such that
(Cro,m0) € E(G). (5)
We take r,, = ("ro and we suppose that for every r € X we have

lim Y4 (ry, ) and  lim Yo(r;,mi41) exist and finite.
1—+00 1—+00

Then ¢ has a unique fized point.
P r oo f. The equation (5) implies that there exists ro € X such that (Cro,ro) € E(G).
Since ( is G-edge preserving, we obtain

(" 1r0,¢"r0) € B(G), for all m € N,

Let rg € X, we assume that d((rg, 7o) > 0 otherwise the proof is completed. Subsequently,
d(rn,Tn+1) = d(rp, Cry) > 0. Let it be

ap =d(rp—1,Tn).
From (4) we obtain
g1 = d(Tn; rpg1) = d(Crn—1,(rn) < (0(rn-1) = @((rn-1))d(rn-1,mn) =
= (@(rn—1) = ¢(rn)) .

Hence,

< p(rn_1) — @(ry), for all n € N. (6)

Therefore, the sequence (p(ry,)) is non-increasing and positive. Thereby, 1ir_1£1 o(ry) =
n—-+0o0

r > 0. Now, using (6) we get

=

s ~
i=1 v 1

3 2L €3 (plri-1) = 1)) = (1) — 1) + () -+ (runt) — () =

@(ro) — p(rn)
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—+o0

o
which means that E o oo, Consequently, we have
. (67
=1

. [67ER}
lim
1—~+00 (o7

—0. (7)

Taking into account (7), there exists ig € N such that for all i > ig

Yl <K, for K € (0,1).
Q;
It yields that
d(TiJrl,TfL') g Kd(’l’i, 7’1',1), for all 4 2 io. (8)

Now, we show that {r;} is a Cauchy sequence. From (8), we get
d(riv1,7:) < K'd(ro,m1), for all i > io. (9)
On the other hand, from (4),
d(¢"ro, ¢ o) < (9(¢"Hr0) — (¢"ro))d(¢" o, (o),

which gives (" 1rg) —o(¢"rg) = 0. Hence {p(¢™ro)} is a decreasing sequence of positive
numbers. Let pg = hI_"I_l ©(C"ro).
n—-+00

For any n,m € N, we have

d(¢"ro, ¢ ™ro) < (0(CM o) — @(CMr0))d (¢ o, ¢ ) <
((¢" o) = (¢"ro))(@(C" 1) — (¢ 1 r0))d(¢" P10, ¢ o) <

NN

H (¢"*ro) — (¢ ) d(¢Oro, (o).

From the properties of ¢ we have

H (C"Frg) — (¢ rg)) — 0 as n — +o0.
k=1

We claim that
lim  d(¢%rg,¢™rp) = 0.

m——+oo
Using the condition (des) in Definition 1 we get
d(¢ro,¢"ro) = d(ro, mm) <
<1 (ro,r1)d(ro, 1) +O2(r1, rm)d(r1, 7m) <
< Vi(ro,r1)d(ro, 1) + V2 (r1, rm )01 (11, 72)d(r1, 72) +
+ Da(r1,mm)02(r2, m )d(1r2, 7)) <
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l\.’)

m—

p

< Yi(ro,r)d(ro, 1) + (H %m)
p:l =1

1

m—

X 7-91 (Tp7Tp+1) Tvap+l H Tkv,rm Tmflv,rm)-

Using (9) we obtain
m—2 P
d(COTO, Cmro) < 191(7’0, Tl)d(To, 7’1) + <H 192(7’q, Tm)) X
X 191 (rp’ rp+1)Kpd(TOa 7"1) + H 192(”6; rm)Km_ld(rO; rm) <

<191(7’0,7’1)d(7"0,7’1)+ - <H’l92(7’q,7’m)> X

X 191(Tp,7“p+1)Kpd(T0,7‘1) < 191(7“0,Tm)ﬁg(To,Tl)d(To,Tﬂ +

+ Z <H 192 T‘Ivrm ) (Tpverrl)Kpd(TOle) <
b=

P
S (H%(?‘Nm)) U1 (rp, 1) KPd(ro, m1) =

where

P
Tp = (H 192(”!17”?%)) D1 (rp, rp41) KP.

q=0
From the properties of the controlled functions ¥, 92 and the constant K we can deduce
that

i =

i d(¢°ro, (™ re) = 0.
Thereafter, lim,, o d(¢"rg, (" ™rg) = 0. Thus {¢"r¢} is a Cauchy sequence in the space
X. Then, there exists r* € X such that {{"r¢} converges to r* as n — +oo. Due to the
continuity of ( we obtain that (r* = r*. Therefore, r* is a fixed point of (.

Assume there would be two different fixed points r] and r3 in X such that {ri = r}

and (r5 = r5. We have

d(ry,r3) = d(Cr1, Cry) < (p(r1) — (Cr1))d(ri, r3) = (p(r1) — ¢ (r1))d(r1,73) =0,

then d(ry,r5) = 0 implies uj = vj. O

Remark 3. The Theorem 2 is a generalization of Theorem 1 in [35]. In fact, in [35] the
authors present a Caristi type fixed point in b-metric spaces. It is clear that the considered
metric in the above result that is DCMLS endowed with graph is more general than the
b-metric space.

64 Bectuuk CII6I'Y. IIpuknaguas maremaruka. Vudopmarnka... 2025. T. 21. Bemm. 1



5. Fixed point result in double controlled metric-like spaces for ©-contrac-
tions. In this section, we present our second result inspired from the recent work of Jleli
and Samet [31]. Next, we use the fixed point theorem to establish the existence of the
solution of a boundary value problem and check its uniqueness. Recently, authors [31]
proposed a concept of ©-contraction. We start by defining the set © := {f : (0, +00) —
(1,400)} as follows:

(%) 6 is continuous and non-decreasing;

. A _ . _ Jr_

(xx) for each sequence {5,} C (0, +oo),ngrfoo9(ﬂn) =1ls nleIJIrloo Brn =0T,

: - 0(B) -1

(x * ) there exist x € (0,1) and l; € (0, 4o00] such that 615& = lg-

Theorem 3. Let (X,d) be a DCMLS and ¢ : X — X be a continuous mapping
satisfying the following condition: there exists a function 6 € © such that

0(d(Cu, v)) < [0(d(w, )", if d(Cu,Cv) #0 for u,v € X, (10)

where v € (0,1). Moreover, we take r,, = ("rg for ro € X and we assume that for every
r € X we have
lim 9 (r,741) and  lim Yo(r, v exist and finite. (11)
1— 400 11— 400
Then ¢ has a unique fized point in X.
P r o o f. Let fix an arbitrary point ro € X. We build an iterative sequence {r,} as
follows:
rn = ("rg, for all n € N.

Suppose, if r,« = ry«41 for some n* € N, then r,- is a trivial fixed point of (.
Thus, we suppose, without loss of generality, that d(r,,,r,+1) > 0 for all n € N. From
(10), we have

é(d(’rn,’rn_,_l)) = é(d(Crn—hCrn)) < [é(d(rn—laTn))]T < [é(d(rn—%rn—l))]r

By continuing this process, we get

2

1< 0(d(rp, 1)) < [0(d(ro,m))]"", for all n € N. (12)

Letting n — o0 in (12), we get 8(d(rp, 1)) — 1 as n — 4oc0.
From (%), we have

ngrfoo d(rp,mn+1) = 0.

Similarly, we can easily obtain that

nEI-lr-loo d(rp, rny2) = 0.

From (% * %), there exist x € (0,1) and l; € (0, 4+00] such that

hm e(d(rn7rn+1)) — 1 — lé
n=too [d(rn, rpg)]”

l <
Suppose that l; < +o00. In this case, let A = 59 > 0. Using limit definition, we pick ng € N

such that B
0(d(rn, Tnr1)) — 1
[d(rn, rns1)]"
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0(d(rn,rny1)) —1

This implicates that
[d(rn, Tng1)]"

‘>léAA,foralln>no.

Then, we infer that

é(d(rn, Tny1)) — 1
A

n[d(rp, rnt1)"] < n [ ] , for all n > ng.

Suppose that l; = 4+00. Let A > 0 be an arbitrary positive number. Using the limit
definition, we find ng € N such that

é(d(’rn, Tn-‘rl)) —
[T, Tnt1)]"

1
> A, for all n > ng.

This implies that

é(d(rn, Tny1)) — 1
A

n[d(rn,rnt1)]" < n { } , for all n > ny.

Thus, in all cases, there exist % >0 and ng € N such that

é(d(rn, Tnt1)) — 1
A

n[d(rn, rat1)]” <n [ } , for all n > ng.

Using equation (12), we obtain
n[d(rn, rny1)]" < [é(d('rOaTl))]Tn — 1, for all n > nyo. (13)
If we let n — 400 in (13), then we get

nEIJlrloo n[d(rn, rny1)]™ = 0.

Hence, we can find n; € N such that

1
d(rn,mni1) < —, (14)

nes

for all n > n;. Let 4,5 € N such that r; # r; for all ¢ # j, otherwise it is easy to conclude
that r; is a fixed point of {. Suppose without loss of generality that i < j. Using the
triangle inequality of the DCML, we get

d(ri,ry) < O1(ri, rip1)d(ri, rig1) + Y2(rigr, 75)d(rigr, rj) <
< (1, mig1)d (i mit1) + 2(rig1, 7)1 (Pig1, ir2)d(Pig1, Tiv2) +
+ D2(riv1,75)02(rig2, 75)d(riy2, 1) <

Jj=2 P
<O(riyriv))d(riricn) + Y | [T O20rgm5) | x
p=i+1 q=i+1

j—1

X V1 (rp, rpr1)d(rp, rpr1) + ] 2(rz,ry)d(ry—1,my).
z=1+1
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Using (14) we get

—2
1 1
d(ri,rj) < 91(ri, rig1) T Z H Vo(rq,r5) | V1(rp, pt1)— +
" p=it+1 \g=i+1 pr
1
+ H Vo TZ)TJ —- <
z=1+1 J=
1 j—2 D
<O (1, rig1)V2(ri 1) T + H Pa(ry,rj) | X
b p=1+1 \g=:i+1
1 1
X 01 (rp, Tpy1)— + H Yo(r, 1) <
pr z=1+1 Jr
1 1
Z H192 TQarJ 191(7410’741)4‘1 _l+ H 192 TZarJ 1 <
p=ti q=1 p- z=1+1 Jr
1
Z H’l92 rq:75) | V1(rps Tp1) —
p=i \q=i pr
1

Therefore, due to the properties of 7 and ¥ given by (11) and knowing that — > 1, we
obtain that

?ﬁ

d(ri,r;) — 0 as i,j — +oo.
Hence, the sequence {r;} is a Cauchy sequence in X. Since (X, d) is a complete DCMLS,

there exists a point r in X such that _1i£rn r; = r. By using the continuity of { we can
1—+00

conclude that = r. Thus, ¢ has a fixed point. Suppose that ¢ has two different fixed points
r1 and r3. Therefore, using (10), we obtain

0(d(r1,m1)) = 6(d(Cr1,¢ra)) = 0(d(¢Fri, ¢"ra)) < [0(d(r1,72))]" < 6(d(r1,72)),

which is a contradiction. Hence, r; = rs. ]
6. Resolution of second-order differential equation. Now, we use our obtained
result in Theorem 1 to verify the existence of a solution to the following problem (R):

d*w
=5 = h(r,w(r)), re€]0,1], (15)
w©) = w(1) =0,

where h : [0,1] x R — R is continuous. The Green function related to (15) is defined by

[ rl-s), 0<r<s<l,
G(T’S>{ s(I1—=r), 0<s<r<1.

Denote by
C([0,1]) ={¢:[0,1] — [0,1] : £ is continuous}.

Let d: C([0,1])?> — R be defined by

(. 5) = lIr = sllac = mase [r(k) - s(8).

It is easy to see that (C([0,1],d) is a DCMLS.
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Theorem 4. Consider the problem (R). Assume that the following assumptions hold:
(1) there exists a function ® : R? — R such that, for all r € [0,1], and by, bz € R with
D(b1,b2) = 0, we have

h(r,b1) — h(r,by)| < 8 by —bol ) ;
h(r,ba) — h(r,bo)| @/’(bhbzen&%ﬁ,wo'l 2|)

(2) there exists wo € C([0,1]) such that, for all r € [0,1], we have

(. [ G s)h(s,wn(s))ds) > 0
0

(8) if {wy} is a sequence in C([0,1]) such that w, — w € C([0,1]) and ®(wy, wpi1) =
0, Yn € N, then ®(wy,w) =0, for alln € N;
(4) for all v € ]0,1], for all w,p € C([0,1]), ®(w(r), p(r)) = 0 implies

@(jc;(r, s)h(s,w ds,/lG ))ds) >
0 0

Then, (R) has a solution in C?([0,1]).
P r o o f. Solving the problem (R) is equivalent to solving the integral equation

r) = /G(r, s)h(s,w(s))ds, for all r € [0,1].
Let f be a self-mapping on C([0,1]) defined by
1
/G w(s))ds, for all r € [0, 1].
0

Suppose that w, p € C([0,1]) such that
P(w(r), p(r)) =0, for all 7 € [0,1].

Using the first assumption of the theorem, we obtain that

[Fur) = fp)| = | / G(r. (s, w(s)) — h(s, pls))Jds| <
d
< jars\hsws))—h(s,p<s>>\ds<
d
< jcrsds (1w = plloc)) <
d
< 8 sw / Gl s)ds ) (U(|[w = pll))

rel0,1
[ ]0
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As

for all » € [0,1], we get
1
sup /G(rsds:—
ref0,1] 5

Lfw = folle < ¥([lw — pll),
for each w, p € C([0,1]), such that

Consequently

O (w(r), p(r)) =0, for all r € [0,1].

Therefore, the condition (i7) of Theorem 1 is hold. Now, let us prove that f is a-admissible
concerning x. Let

o,k : C([0,1])* — [0, 4+00)
be the mappings defined by

@(w(r),p(r)) >0, relo0,1],
otherwise,

and
{ % ®(w(r), p(r) >0, re[0,1],
2

otherwise.

)

Let w, p € C(]0,1]) such that a(w, p) > &(w, p). Hence,
®(w(r), p(r)) = 0, for all r € [0, 1].

Hence,
[[fw — fplleo < WU(||w — plloo)-

Furthermore, if w, p € C([0, 1]) such that a(w, p) > k(w, p) then by applying the assump-
tion (4) we obtain ®(fw(r), fp(r)) = 0 and this gives that a(fw, fp) > &(fw, fp). Hence,
f is a-admissible with respect to . Using the condition (2), there exists wy € C([0,1])
such that a(wg, fwo) = &(wp, fwp). So, all the conditions of Theorem 1 are hold, thus f
has are a fixed point in C([0, 1]) say w™* solution of the problem (R). O

7. Resolution of fourth-order differential equation. In the sequel, we study the
existence of solution of the following fourth-order differential equation boundary problem
(P) using the result given by Theorem 3:

C4(t) — f(lf, C(t)a </, C//, C///)’
¢(0) = ¢'(0) =¢"(1) =¢"(1) = 0; t € [0,1].

We will use the Theorem 3 to prove the existence and uniqueness of the solution of the
above problem. Let X = C[0, 1], where

C([0,1]) ={£:[0,1] — [0,1] : £ is continuous}.
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We consider the DCMLS on X?2 defined by
d(Tl,Tg) = |’I“1 — 7“2|2.

It is easy to check that (C[0,1],d) is a DCMLS. Indeed, the conditions (dci) and (des)
of Definition 1 are satisfied. For the triangle inequality (des), let f,g,h € C[0,1] and ¢4,
g : C[0,1]2 — [2, +00), we have

d(f.9) =If—gl? |f —h+h—g’<
2(f=hP+|h—g]*) <

O1(f,WIf = hl? + Oa(h, g)h — g,

<
<
Using the integral form, the problem (P) can be written:
1
() = [ @00, ()¢ v, ¢ clo.al,
0

where G(u, v) is the Green’s function of the homogenous linear problem ¢*(u) = 0, ¢(0) =
¢'(0) =¢"(1) =¢"(1) = 0, represented by

1 _
G(u”u) _ 6 (3’U U) 0 Su<v< 13 (16)
(15 2Bu—v), 0<v<u<l.

From (16), we can affirm that G(u,v) has the properties

1
§u2v2 < G(u,v) €

1
u? (or 51)2), u,v € [0,1].

N =

Theorem 5. Assume that the following assumptions hold:
(1) h:]0,1] x R® x R — R is continuous;
(2) there exists T € [1,+00) such that for all {,z € X:

|h(U,C,C/) - h(v,z,z')| < \/%e%K(U) - Z(’U)|, v e [O’ 1];

(8) there exists (o € X such that for all u € [0, 1], we have

Cou < /Guv ORI

Then the problem (P) has a solution in X.
P r o o f. If we define the mapping h: X — X by

=/GmwMume@mM
0
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Then ¢ = h({. Consequently, (P) has a unique solution. Consider,

2

[P(0)(u) — h(z)(u)|* = ‘ /G(uvv)h(v,é(v),é’(v))dv */G(uvv)h(v&(v),z’(v))dv <
0 0
< [ (G(u,v))"[h

G (0,€(v), ¢ (v) = h(v, 2(v), 2 () Pdv <

0

< vido <

|

o\
[

1
v120e77|¢(v) — z(v)[Pdv < 20e”7d(C, z)/
0

< 20e7d(¢, 2)2—10 =e 7d((, 2)

which yields,

here e™” < 1 as 7 > 1. Hence
\/;
NIROAE) ¢ <e\/d<<,z>>

with » = ve~7 which gives,
0(d(h¢, hz)) < [0(d(¢, 2),

where f(u) = eV*. Since all the conditions of Theorem 3 are verified, h has a fixed point.
Hence, (P) has a solution in X. O

8. Conclusion. In closing, various applications of fixed point results in the DCMLS
were presented throughout this work. Indeed, we proved the existence of solution of two
types of differential equations: second order and fourth order. The resolution was based
on fixed point theorem, previously proven under suitable assumptions, for each equation.
Moreover, we introduce the notion of G¢-contraction by combining the graph theory and
the notion of fixed point. We explore the uniqueness and the existence of fixed point for
such contractions in a DCMLS involving a graph.
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Pemiennue HEKOTOPbBIX KJIaCCOB I'PAaHMYIHBIX 3ala9 C IIOMOIIBbIO Pe3yJibTaTOB,
IIOJIY9€HHbIX B 9JaCTUYHO MeTPpUYeCKUX IIPOCTPaHCTBax C ,I[BOﬁHI)IM KOHTpOJIEM

H. Cyas"?, 3. J. Mumpoeuy®

1 Vuusepcurer kopons Cayna,
Caynosckas Apasus, 4545, Op-Puan, n/a 145111
2 Vuusepcurer Tynuca,
Tynuc, 1938-1007, Tyuuc, Oys. 9 anpess 1938, 92
3 Vuusepcurer Bans-Jlykn,
Bocuus u 'eprieropuna, 78000, Bausi-Jlyka, 6ys. BoeBoapb! [lerapa Boitosuua, 1A

HAnasa muruposanusi: Souayah N., Mitrovié Z. D. The methods to solve some classes bounda-
ry value problems via the results in double controlled metric-like spaces // Becrauk Cankr-
ITerepbyprckoro yaupepcurera. [Ipukiaanas maremaruka. Madopmaruka. [Iporeccs ynpasie-
aus. 2025. T. 21. Bem. 1. C. 58-74. https://doi.org/10.21638/spbul0.2025.105

B pabore mpecraBiieHbl METOIBI PEIIEHUs] TPAHUYIHBIX 3389 BTOPOTO M Y€TBEPTOTO TOPSi/I-
KOB. JIOKa3bIBAIOTCS HECKOJIBKO HOBBIX TEOPEM O HEMOIBUXKHON TOYKE B UYACTUIHO METPHU-
YeCKUX IPOCTPAHCTBAX C JBOMHBIM KOHTpOJeM. Bomurcs cxxumaroinee orobpaxenme G,
KOTOPOE JIECTBYET B TOM K€ IMPOCTPAHCTBE, JOMOJHUTEILHO CHAOXKEHHOE IpadoM, CBA3DI-
BAIOIIAM €r0 3JIEMEHTHI, U BBIBOJIATCSA PE3Y/IbTATHI O HEMOJABUXKHON TOYKE ITOTO OTOOpaKe-
Hus. B KayecTBe IPUIIOXKEHU IOy YeHHbIE PE3YJIbTAThI UCIOJIB3YIOTCS JJId TOKA3aTEIbCTBA
CYIIECTBOBAHUA PENIEHNI HEKOTOPBIX KJIaCCOB I'PDAHUYHBIX 3329 BTOPOT'O M YeTBEPTOro IIO-
PAIKOB.

Kmouesvie caosa: nuddepeHInaibHble ypaBHEHUsI, HEMOJBUKHASI TOYKA, TeOpHUs rpadoB,
YaCTUYIHO METPUYIECKNE MTPOCTPAHCTBA C JIBOWHBIM KOHTPOJIEM.
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