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We have developed a microscopic version of general concealed voter model (GCVM).
Original GCVM uses only statistical-physical methods, while our new approach starts with
a real network. A microscopic model is suitable for any two-layer network (with internal
and external layers) satisfying the definition given in the paper. We conduct a series of
simulations with different network structures and found that a cyclic external structure
prolongs consensus time in comparison with a complete external structure. Moreover, a cyclic
external structure has a positive impact on a winning rate, and this result is different from the
one obtained in the macroscopic version of GCVM. The possible reasons for this difference are
discussed in the paper. Additionally, we propose and validate the hypothesis that there exists
a strong linear relationship between a consensus time and pairwise average shortest paths d in
the network structure. We performed a controlled variable approach to validate the impact of
each individual parameter on key performance indicators (KPIs) including a consensus time
and winning rate. Furthermore, we assess the influence of parameter combinations on KPIs
by analyzing the results using the K-means algorithm. We conclude that certain parameter
combinations can have a significant impact on the consensus time.

Keywords: opinion dynamics, voter model, concealed voter model, general concealed voter
model, winning rate.

1. Introduction. Opinion dynamics models can be divided into two main groups:
macroscopic and microscopic. Macroscopic models examine social networks using statisti-
cal-physical methods and applying probability theory and statistical methods to analyze
the evolution of opinion distribution, e.g., the Ising model [1], voter model [2], concealed
voter model (CVM) [3, 4], and a macroscopic version of the general concealed voter model
(GCVM) [5]. The Ising model has a long history in statistical physics [6]. The Sznajd
model [7] is one of the well-known modifications of the Ising model. In each round of
the Sznajd model, a pair of agents ai and ai+1 is selected for interaction to influence the
nearest neighbors, i.e. agents ai−1 and ai+2. In a voter model [2], a random agent ai is
chosen, then her random neighbor is chosen, and this neighbor adopts ai’s opinion. In
CVM [3, 4], it is supposed that the social network is divided into external and internal
layers, and the individuals conceal or publicly express their opinions. The external layer
in CVM is a complete network, and each node in the external layer is linked with her
prototype node in the internal layer. Moreover, there are no connections between nodes in
the internal layer. Therefore, no internal interaction between agents is assumed in CVM.
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In paper [5] GCVM is introduced, where it is supposed that the individuals can interact
in the internal layer, which is motivated by the wish of individuals to share their real
opinions with their close friends.

Microscopic models directly describe how individuals’ opinions evolve social indivi-
duals’ perspectives, e.g., see the DeGroot model [8], the Friedkin — Johnsen (F-J) model
[9], and bounded confidence models [10, 11].

In the DeGroot model, each individual updates his opinion based both on his own
and his neighbors’ opinions. The F-J model is an extension of the DeGroot model in which
stubborn agents are considered. In the F-J model, actors can also take into account their
initial prejudices in every iteration of opinion [12]. The possibility to control the agents’
opinions by nonmembers of network is considered in [13, 14]. The upgraded F-J model
with passive and active agents is introduced in [15]. A bounded confidence model (BCM)
is a model, in which agents ignore the opinions that are very far from their own ones [6].
The BCM includes two essential models: the Deffuant— Weisbuch model (D-W) proposed
in paper [11], and the Hegselman — Krause (H-K) model introduced in the work [10]. In
the D-W model, two individuals ai, aj are randomly chosen, and they determine whether
to interact according to the bounded confidence [16]. The comprehensive survey [17] exa-
mines various models in the bounded confidence opinion dynamics domain, highlighting
key mechanisms leading to consensus emergence, polarization, and fragmentation within
groups.

According to [18], opinion dynamics models are usually composed of a few essential
elements: (i) opinion expression formats defining how to represent opinion mathematically,
(ii) fusion rule determining how individuals interact with each other, and (iii) opinion
dynamics environments, that is, a structure of such a social network.

In a social network, individuals neither fully accept nor completely ignore the opinions
of other individuals. To a certain extent, they consider these opinions in forming their new
opinions in a process defined by a fusion rule. Through a group interaction, individuals
continuously update and integrate their opinions on the same issue. Eventually, there are
three varieties of stabilized fusion results: consensus, polarization, fragmentation, and one
unstable fusion result, that is oscillation [10].

The GCVM [5] belongs to the group of macroscopic models, we start with a network
structure and use statistical-physical methods and probability theory to formulate and
simulate the opinion dynamics process (i. e. in the simulations, we do not create a real
network and simulate this model based on formulas).

In this paper, we examine several real networks and simulate the opinion dynamics
on these networks. First, for the given internal and external structures, we create the
corresponding networks. Then, we initialize the initial opinion for each individual/agent
based on some parameters. Like in a macroscopic version of GCVM, we allow players to
exchange their opinions with players from internal layer.

The difference between macro and micro versions of GCVM is that in a micro version
model we do not need to adjust the simulation program according to a different network
structure. As long as a network structure is given, the program will automatically produce
simulations. Therefore, it will be convenient to use this program to simulate a real network
structure. But in a macro version, for different network structures, we should adjust the
corresponding state transition formulae.

The primary conclusion drawn from this research indicates that a cyclic external
structure invariably increases consensus time and positively impact a winning rate. Fur-
thermore, it has been observed that when a circle in the external layer is extended to a
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complete graph, it significantly impacts the consensus time due to the reduction of the
average shortest path between every pair of nodes in the external layer (see formula (2)).
While each parameter individually influences consensus time, none of them impact the
winning rate.

The rest of this paper is organized as follows. Section 2 introduces a model. In Section 3
we present the experiments and results. The conclusions are given in Section 4.

2. Model. A two-layer network with N individuals/agents is defined by
• N : number of individuals/agents in the network;
• ai = (aEi , a

I
i ): individual/agent i, where i = 1, . . . , N , aEi (aIi ) is a representation

of agent i in the external (internal) layer (i.e. a set of individuals/agents is the same for
both layers);

• GE(VE , EE): predefined external network, where VE = {aEi }, i = 1, . . . , N , repre-
sents a set of individuals and EE — a set of social relations between individuals in the
external layer;

• GI(VI , EI): predefined internal network, where VI = {aIi }, i = 1, . . . , N , represents
a set of individuals and EI — a set of social relations between individuals in the internal
layer;

• EC = {(aEi , aIi )|i = 1, . . . , N}: set of edges connecting individuals in external and
internal layers.

We define a two-layer network with N individuals/agents as

G(V , E), (1)

where V = VE ∪VI , |VE | = |VI | = N , and E = EE ∪EI ∪EC . This definition is independent
of a specific network structure, i.e. external/internal networks can be different.

2.1. The general concealed voter model (macro version). Zhao and Parilina
[5] proposed GCVM based on CVM introduced in [3]. These papers use simulations to
represent opinion transmission processes in two-layer networks. In the following section,
we introduce GCVM in a micro version.

2.2. The general concealed voter model (micro version). In the GCVM, we use
R,B (r, b) to represent individuals’ external (internal) red and blue opinions respectively.
There is a list of notations:

• S = {Rr,Rb,Br,Bb}: set of all possible states of an individual;
• ω(ai, t) ∈ S: opinion of individual ai at time t, where i = 1, . . . , N , and t = 0, 1, . . .;
• ρre : ratio of individuals having red opinion in external layer;
• ρri : ratio of individuals having red opinion in internal layer;
• ρr: ratio of individuals having red opinion in both internal and external layers;
• re: number of individuals having red opinion in external layer;
• ri: number of individuals having red opinion in internal layer;
• r: number of individuals having red opinion in both internal and external layers;
• πce : external copy rate, that is a probability of an individual to copy opinion of

his/her external neighbor;
• πci : internal copy rate, that is a probability of an individual to copy opinion of

his/her internal neighbor;
• πe: externalization rate, that is a probability of hypocrisy∗ choosing to publicly

express his/her internal opinion;

∗ By hypocrisy we mean a node having different opinions in external and internal layers, i.e., the
nodes in states Rb and Br.
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• πi: internalization rate, that is a probability of hypocrisy accepting his/her external
opinion.

In Sections 2.2.1–2.2.3, we describe GCVM of opinion dynamics in a two-layer net-
work. The description is organized so that to understand how numerical simulations pre-
sented in Section 3 are done. In the following section, we introduce GCVM in a micro
version.

2.2.1. Two-layer network structure initialization. We start by setting two
networks GE and GI (we read these networks from the file, and an example of such a file
representing external cycle and internal star structures is shown in Listing. Then we add
the edges between external and internal representations of individuals).

Listing. Example of graph file with external cycle and internal star structure

>>>ext e rna l

E0 E1

E1 E2

E2 E3

E3 E0

<<<ext e rna l end

>>>in t e r n a l

I00 I1

I00 I2

I00 I3

<<<in t e r n a l end

This results in a two-layer network G we store as an adjacency list.
2.2.2. Initialization of individuals’ initial states. Denote a number of indivi-

duals in state s ∈ S by #s. We have the following relations:

N = #Rr +#Rb+#Br +#Bb,

re = #Rr +#Rb,

ri = #Rr +#Br,

r = #Rr,

#Bb = N − re − ri + r,

#Rb = re − r,

#Br = ri − r.

Assuming a uniform distribution for each agent to belong to any state s ∈ S at the initial
time, we adopt the following rule of setting the initial state ω(ai, 0) for any agent ai at
time t = 0:

ω(ai, 0) := f(x) =





Rr, 0 6 x < ρr,

Rb, ρr 6 x < ρre ,

Br, ρre 6 x < ρre + ρri − ρr,

Bb, ρre + ρri − ρr 6 x 6 1,

where x ∼ U(0, 1).
2.2.3. Opinion transmission process. We can divide individuals into hypocrites

and nonhypocrites based on the consistency of their external and internal opinions. Hypo-
crites are individuals who have different opinions in the internal and external layers, while
non-hypocrites have the same opinions in both layers.
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We focus on two measurements to analyze GCVM:
• consensus time: Tcons is consensus time in (G)CVM, that is, the time required for

all individuals to form the same opinion in internal and external layers (i.e., ρre = ρri =
ρr = 0 or 1 for Tcons);

• winning rate: ρ is a winning rate of red opinion in a series of simulations. For the
opinion, to win means that there is no other opinion that agents have in the whole network
(i.e. in a series of simulations, the number of simulations, in which red opinion wins blue
opinion divided by the number of simulations).

Before presenting an algorithm of GCVM, we briefly define the actions available for
a randomly chosen individual ai:

• picking up ai’s neighbor: randomly choose a neighbor among all ai’s neighbors. Let
it be individual aj (this is a prerequisite action for external/internal copying);

• external copying: ai copies aj ’s external opinion with probability πce ;
• internal copying: ai copies aj ’s internal opinion with probability πci ;
• externalization: ai expresses his/her internal opinion with probability πe (this action

is available only for hypocrite);
• internalization: ai accepts his/her external opinion with probability πi (this action

is available only for hypocrite).
Externalization and internalization are meaningless for non-hypocrites, so they have

only two possible actions (external and internal copies).
Algorithm of GCVM :
Step 1. Initialize t = 0.
Step 2. Choose an individual ai, uniformly random from N individuals in two-layer

network G.
Step 3. Check all valid actions of individual ai (depending on his/her state) and ran-

domly choose one of the valid actions with equal probabilities:
I) ai is a hypocrite, then he/she has four possible actions: (i) external copying, (ii)

internal copying, (iii) externalization, and (iv) internalization. Any action is chosen with
a probability of 0.25;

II) ai is a nonhypocrite, then he/she can perform only external or internal copying.
Any action is chosen with a probability of 0.5.

Step 4. Generate random number x ∼ U(0, 1). Perform the action chosen in Step 3:
a) if external copying is chosen in Step 3 and x < πce , then ai copies aj ’s external

opinion;
b) if internal copying is chosen in Step 3 and x < πci , then ai copies aj ’s internal

opinion;
c) if externalization is chosen in Step 3 and x < πe, then ai expresses his/her internal

opinion;
d) if internalization is chosen in Step 3 and x < πi, then ai accepts his/her external

opinion.
Step 5. Increase t by 1. If consensus is reached∗, stop iteration. Otherwise, go back to

Step 2.

3. Experiments and results.
3.1. General description. The experiment focuses on observing the effect of an

external network structure on a winning rate of opinion and consensus time.

∗ The algorithm will be stopped when all individuals in both layers hold the same opinion, i. e. con-
sensus is reached.
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We consider two types of external structures: cycle and complete, and seven internal
structures: cycle, complete, star, two-star (odd and even cases), and two-clique (odd and
even cases). This gives us 14 different combinations of external-internal structures, i. e.
14 two-layer networks.

Figure 1 is an example of a two-layer network with an external cycle and internal two-
clique layers. For other structures, we need to modify the corresponding layer accordingly,
which we do not present here to save the space.

Figure 1. Representation of external cycle with internal two-clique network
Black represents red opinion, and white represents blue opinion.

a — odd number of nodes; b — even number of nodes.

For our experiments, we fix the following parameters: ρre = 0.75, ρri = 0.25, ρr = 0.2,
πci = πce = 1, πe = 0.01, πi = 0.5, N = 100. Then we observe the effect of external
structure on the winning rate of opinion and consensus time (number of iterations) for
the given internal structure. We conduct 100 simulations for each model and obtain the
following statistical results. The models presented in Figure 2, a and b below are named
as “external layer — internal layer — # of individuals”.

As shown∗ in Figure 2, a, we conclude that cyclic external structures prolong consensus
time in comparison with complete external structure (the similar result is obtained in
[5]). This conclusion is true for all internal structures we examine in the experiment.

∗ The number in the model name represents the number of individuals. e.g. 50 represents an even
case, and 51 is an odd case.
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Figure 2. Observed consensus time (a) and winning rate (b) for models
with different two-layer network structures

Additionally, we observe that the internal structure also has an impact on consensus time.
For instance, consensus time for a two-star internal structure is less than that of a two-
clique internal structure.

However, the observation results for the winning rate are quite different than in our
previous work [5], as shown in Figure 2, b. We can notice that except internal structures
“twoStar-51” and “star-50”, a cyclic external layer decreases the winning rate. For all other
models, a cyclic external structure has a positive impact on the winning rate. The possible
reason is in specification of a microscopic model, i.e. actions that an individual/agent
can take are related only to his current state∗. In a macroscopic version of GCVM, the
probability of each possible action is related to the overall state of the system represented
by a triple (ρre , ρri , ρr) (see [5]).

∗ For nonhypocrites, an individual has two possible actions, and for hypocrites, an individual has four
possible actions. The probability for each possible action of an individual/agent at the present moment is
fixed.

176 Вестник СПбГУ. Прикладная математика. Информатика... 2024. Т. 20. Вып. 2



3.2. Main results and observations. Based on the findings from Section 3.1 indi-
cating that a cyclic structure has a positive impact on consensus time, we have formulated
the following research questions. A series of experiments were designed and conducted in
order to address these research questions:

1. How does an external structure influence KPIs, i.e. are there any features of a
network that significantly affect KPIs? To address these question we do the following:

a) extend a cyclic structure to a complete one in different ways∗,
b) reduce a cyclic structure to a line, and observe the KPIs,
c) conduct statistical tests to determine if there are significant differences in the dis-

tribution of KPIs for different ways of constructing a complete graph (see Item a),
d) check the correlation between network features and KPIs.
2. How do externalization and internalization rates influence KPIs?
a) avary πe from 0.1 to 1.0 with a step of 0.1,
b) vary πi from 0.3 to 1.0 with a step of 0.1 (note: when πi = 0.1 or πi = 0.2, consensus

cannot be reached in some models).
3. How does a copying rate influence KPIs?
a) vary πc from 0.1 to 1.0 for both layers with a step of 0.1.
4. How does a combination of parameters influence KPIs (i.e. which combinations

maximize or minimize consensus time and winning rate)?
a) use a combination of parameters (πi, πe, πci , πce), where we vary πi ∈ [0.3, 1] and

πe, πci , πce ∈ [0.1, 1] with a step of 0.1.
We start by extending a cyclic structure in the following three different ways:
• normal: find a set of edges presented in a complete graph but not in a cyclic graph,

and add them sequentially to a cyclic graph until finally obtain a complete graph;
• random: find a set of edges presented in a complete graph but not in a cyclic graph,

and add them randomly to a cyclic graph;
• shortest: find a set of edges presented in a complete graph but not in a cyclic graph,

and add the edges from the list that minimizes d, where d is the average of the shortest
paths among all pairs of nodes in external layer. Here d is calculated as follows:

d =
∑

s,t∈VE

d(s, t)

nE(nE − 1)
, (2)

where d(s, t) is the length of the shortest path between s and t, VE is a set of nodes in
external layer, n = |VE | is the number of nodes in external layer.

Obviously, for an undirected graph with N nodes, a cyclic structure has only N edges,
and a complete structure has N × (N − 1)/2 edges. Therefore, a cyclic graph can become
a complete graph by adding N × (N − 3)/2 edges. If we remove one edge from a cyclic
strucutre, it will degenerate to a line.

In our experiments, we extended a network structure from ‘cycle-complete-50’ to
‘complete-complete-50’, defined ‘cycle+δ-complete-50’ as an intermediate network struc-
ture, where δ ∈ Z means the number of edges which we have added to a cyclic structure
by an iteration. Here δ ∈ [−1, 1175], and the value δ = −1 corresponds to the case when
we deleted an edge from a cycle degenerating this cycle into a line. When δ = 1175, the
cycle becomes a complete graph, i.e. the maximal number of edges that can be added into
a cycle with 50 nodes is equal to 1175. In our experiments we examined the dynamics of
consensus time and d when δ is increasing.

∗ A cycle graph can be transformed into a complete graph by adding several nonexistent edges, or
degenerate into a line by deleting an existing edge.
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The results of simulations are shown in Figure 3. In particular, Figure 3, a shows
how d (δ) influences winning rate for different ways of extending a cyclic structure to a
complete one. The right figure is an increase of the first 150 points from the left graph,
we did the same in Figures 3, b and 4. Looking at Figure 3, a, we can notice that winning
rate is almost white noise with changes of δ∗.
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Figure 3. Winning rate (a) and consensus time (b) for the models
with different extension ways

Figure 3, b shows a trend of consensus time when δ is changing, and it is easy to
recognize that the black solid and gray dashed lines have almost the same trend. At

∗ The winning rate is white noise for “random” with lag 1–10, for “shortest” with lag 1–3, but the
winning rate for “normal” extending way is not white noise which is confirmed by Ljung— Box test.
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Figure 4. Consensus time vs d

a — for different extending ways; b — aggregated data.

the beginning, with an increase of the number of added edges, consensus time signifi-
cantly decreases. After reaching a certain level, the increase in the number of edges has
no significant impact on consensus time. First points in Figure 3, b correspond to a net-
work structure “cycle+-1-complete-50” having an external line structure. It is obvious that
dline > dcycle > dcomplete. Therefore, we formulate Hypothesis 1.

Hypothesis 1. There is a significant correlation between consensus time and d.
In order to verify Hypothesis 1, we should find d for each graph in Figure 3, b. After

calculating d for each graph, we construct the third subfigure in Figure 3, b. Obviously,
the first and third subfigures have a similar trend.
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We represent the relation between d and consensus time in Figure 4. The difference
between Figure 4, a and b is that in Figure 4, a we group the data by extending way first,
and then draw the trend, while in Figure 4, b, we do not specify the way of extending the
graph, but only make an analysis based on different d and consensus time.

We can observe an approximately linear relationship in Figure 4. We can further use
statistical methods for correlation analysis [19, 20]. The results of examining the Pearson
correlation coefficient (PCC) [21] are shown in Figure 5. We make the following conclusions:

• the correlation between d and consensus time is significantly strong, and PCC is
0.78;

• for other pairs of KPIs, the correlation is not significant, and the absolute values of
PCC are less than 0.15.
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Figure 5. Pearson correlation coefficients

Hypothesis 2. There are significant differences in KPI distributions for different
ways of constructing a complete graph.

We are interested in how a different extending way influences the distribution of
KPIs. We show empirical distributions of KPIs in Figure 6. We should notice that their
distributions are significantly different for different ways of extending the graph from a
circle to a complete one. But for ‘normal’ and ‘shortest’ extending ways, KPIs distributions
are very similar. We use the Kolmogorov — Smirnov test for further analysis [22, 23]. The
results are shown in Table 1. From Table 1 we can see that p-values for all KPIs when we
compare normal and shortest extending ways are larger than 0.05. We make the following
conclusion: we should accept the null hypothesis that the distributions of KPIs for normal
and shortest extending ways are identical.
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Figure 6. Frequency mass function and empirical cumulative distribution function (ECDF) for different KPIs
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Тable 1. Results of Kolmogorov— Smirnov tests

Pair Statistics p-values
Consensus time

normal vs random 0.557 0.0
normal vs shortest 0.031 0.641
random vs shortest 0.574 0.0

Winning rate
normal vs random 0.114 0.0
normal vs shortest 0.02 0.967
random vs shortest 0.121 0.0

d

normal vs random 0.121 0.0
normal vs shortest 0.02 0.978
random vs shortest 0.12 0.0

For now we find out that some ways of extending a circle to a complete graph have
an impact on KPI distributions. But how significant is this impact? How are mean and
variance affected? Therefore, we formulate next hypothesis.

Hypothesis 3. Means and variances of KPIs are the same for different ways of
extending a circle to a complete graph.

We use some statistical tests to verify equity of variances and equity of means. Before
doing this, we first run normality tests [24, 25] since some statistical tests are parametric,
i.e. they assume normality of the data. The results of normality tests are shown in Table 2,
where we can see that the p-value for all KPIs are smaller than 0.05. Then we should reject
the null hypothesis that any KPI is normally distributed.

Тable 2. Results of normality tests

KPIs Statistics p-values
Normality testing overall

Consensus time 0.5 0.0
Winning rate 0.996 0.0
d 0.396 0.0
Mode KPIs Statistics p-values

Normality testing grouped via mode
normal Consensus time 0.379 0.0
normal Winning rate 0.996 0.003
normal d 0.32 0.0
random Consensus time 0.347 0.0
random Winning rate 0.996 0.003
random d 0.469 0.0
shortest Consensus time 0.442 0.0
shortest Winning rate 0.995 0.001
shortest d 0.369 0.0

In Tables 3 and 4, we have two group of results, ‘ev/em test for all’ corresponds to
whether the variances/means of three extension ways are all equal. The ‘pairwise ev/em
test’ corresponds to two-sample equity test of variances/means. As none of KPIs is nor-
mally distributed, we use the Levene test for variance equity [26–29].

We make the following conclusions from Table 3:
• the variance of winning rate is the same for all extension ways (all p-values in the

Levene tests are greater than 0.05);
• we reject the null hypothesis that the variances of the consensus time are equal for

all extension ways (all p-values in the Levene tests are less than 0.05);
• variances of d are equal for normal and random extension ways.
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Таble 3. Results of variance equity tests

Test Description KPIs Statistics p-values
EV test for all

Fligner test Distribution free Consensus time 195.249 0.0
when populations Winning rate 1.206 0.547
are identical d 23.341 0.0

Levene test More robust Consensus time 12.533 0.0
for significantly Winning rate 1.074 0.342
non-normal population d 5.441 0.004

Bartlett test More depends Consensus time 320.877 0.0
on normal Winning rate 3.584 0.167
population d 351.795 0.0

Pairwise EV test
normal vs random Consensus time 20.967 0.0
normal vs shortest Consensus time 6.579 0.01
random vs shortest Consensus time 7.651 0.006

Levene test normal vs random Winning rate 1.572 0.21
for pairs normal vs shortest Winning rate 0.003 0.959

random vs shortest Winning rate 1.71 0.191
normal vs random d 0.187 0.665
normal vs shortest d 8.533 0.004
random vs shortest d 10.099 0.002

Since none of KPIs is normally distributed, and not all KPIs are homoscedastic, to
verify equity of means we use the Kruskal test [30–33]. The results of the tests are given
in Table 4 and we conclude the following:

• the means of d are equal for all extension ways, i.e. a way of extending a circle to a
complete graph does not affect the mean of d (all p-values in the Kruskal tests are greater
than 0.05). For consensus time and winning rate, the means are not all equal, i.e. they
differ by extension ways;

• we accept the null hypothesis that the means of consensus time (and winning rate)
are equal for normal and shortest extension ways (all p-values in KruskalResult are greater
than 0.05).

Figures 7 and 8 show how parameters (πce and πci in Figure 7, and πe and πi in
Figure 8) influence winning rate. We can see that winning rate fluctuates within a certain
range, but not too much. Therefore, we temporarily think that an impact of parameters
on winning rate is limited.

Figures 9 and 10 show how consensus time varies with a change of parameters (πce
and πci in Figure 9, and πe and πi in Figure 10). We make these interesting observations:

• an increase of external copying rate πce has a negative effect on consensus time.
The interpretation is as follows: when an individual in a society is more inclined to listen
to the opinions of his/her external neighbors, it is helpful to reach consensus;

• with an increase of internal copying rate πci , consensus time increases;
• with an increase of externalization rate πe, consensus time first increases until it

reaches the maximal value, and then decreases. The interpretation of this is as follows:
expressing your true opinion to a certain extent is not effective to reach consensus within
the whole system, but beyond this threshold, along with an increase of desire to express
your opinion, for the system, it is easier to reach consensus;

• with an increase of internalization rate πi, consensus time decreases. This can be
interpreted as follows: when people are more willing to accept their own external opinion,
it will accelerate consensus of the whole system.

In Tables 5 and 6, we show minimal/maximal consensus time and winning rate re-
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Таble 4. Results of mean equity tests

Test Description KPIs Statistics p-value
EM test for all

f_oneway Independent sample; each sample is Consensus time 99.143 0.0
test from a normally distributed Winning rate 23.205 0.0

population; homoscedasticity d 4.795 0.008
Kruskal test Sample size should > 5 Consensus time 1100.711 0.0

Winning rate 46.919 0.0
d 1.596 0.45

Alexander Independent sample; each sample is Consensus time 261.282 0.0
Govern test from a normally distributed Winning rate 47.419 0.0

population; heteroscedasticity d 12.243 0.002
Pairwise EM test

normal vs random Consensus time 795.081 0.0
normal vs shortest Consensus time 0.775 0.379
random vs shortest Consensus time 854.985 0.0

Kruskal test normal vs random Winning rate 32.215 0.0
for pairs normal vs shortest Winning rate 0.229 0.632

random vs shortest Winning rate 37.928 0.0
normal vs random d 1.092 0.296
normal vs shortest d 0.001 0.972
random vs shortest d 1.301 0.254
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Figure 7. Winning rate for different copying rates

a — varying external copying rate πce ; b — varying internal copying rate πci .

spectively for different combinations of parameters. If we compare the left and right parts
in Tables 5 and 6, there is a large difference between maximum and minimum values.
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Figure 8. Winning rate for different externalization and internalization rates

a — varying externalization rate πe; b — varying internalization rate πi.
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a — varying external copying rate πce ; b — varying internal copying rate πci .
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Таble 5. Observed minimum and maximum consensus time

πce
πci

πe πi πce
πci

πe πiN

complete complete 50 1 185 261 644 0.1 1.0 0.1 0.3 28767 0.8 0.1 0.1 1.0

cycle complete 50 1 144 248 878 0.6 1.0 0.1 0.3 29387 0.9 0.1 0.3 1.0

complete cycle 50 26 467 498 1.0 1.0 0.4 0.3 22850 1.0 0.1 0.1 1.0

cycle cycle 50 474 773 0.1 0.1 0.6 0.9 26842 1.0 0.9 0.1 1.0

complete star 50 1602 538 1.0 0.1 0.5 0.3 2018 0.1 1.0 1.0 0.3

cycle star 50 275 898 1.0 1.0 0.1 0.3 2021 0.1 1.0 1.0 0.3

complete twoClique 50 492 816 970 0.2 1.0 0.1 0.3 28185 0.1 0.7 1.0 0.3

cycle twoClique 50 151 026 217 0.7 1.0 0.1 0.3 20923 0.1 1.0 1.0 0.3

complete twoClique 51 708 728 030 0.1 1.0 0.1 0.3 30628 0.9 0.1 0.1 1.0

cycle twoClique 51 449 651 392 0.6 1.0 0.1 0.3 26250 0.1 1.0 1.0 0.3

complete twoStar 50 2027 297 1.0 0.1 0.5 0.3 3795 0.1 0.9 1.0 0.3

cycle twoStar 50 317 571 1.0 0.9 0.1 0.3 3743 0.2 1.0 1.0 0.4

complete twoStar 51 2 347 437 1.0 0.1 0.5 0.3 4201 0.1 0.9 1.0 0.3

cycle twoStar 51 349 638 0.7 1.0 0.1 0.3 4527 0.2 1.0 1.0 0.3

Таble 6. Observed minimum and maximum winning rate

πce
πci

πe πi πce
πci

πe πiN

complete complete 50 0.7 0.1 0.1 0.2 1.0 0.31 0.2 0.6 1.0 0.5

cycle complete 50 0.81 0.9 0.1 0.2 0.8 0.33 0.4 0.1 0.8 0.3

complete cycle 50 0.71 0.2 0.1 0.4 1.0 0.29 0.7 1.0 0.6 0.3

cycle cycle 50 0.82 0.1 0.6 0.1 0.6 0.25 0.2 0.9 1.0 0.6

complete star 50 0.7 0.1 0.4 0.2 1.0 0.24 0.3 0.4 1.0 0.4

cycle star 50 0.82 0.2 0.1 0.1 0.7 0.23 0.1 0.2 1.0 0.4

complete twoClique 50 0.68 0.5 0.7 0.4 0.8 0.3 0.7 0.3 0.9 0.9

cycle twoClique 50 0.76 0.9 0.1 0.1 1.0 0.28 0.2 0.8 0.6 0.5

complete twoClique 51 0.73 0.1 0.1 0.1 0.9 0.32 0.4 0.8 0.7 0.4

cycle twoClique 51 0.77 0.7 0.2 0.1 0.9 0.31 0.1 0.3 1.0 0.5

complete twoStar 50 0.72 0.1 0.4 0.2 1.0 0.26 0.1 0.8 0.8 0.4

cycle twoStar 50 0.77 0.8 0.2 0.2 0.9 0.25 0.3 0.3 1.0 0.3

complete twoStar 51 0.72 0.1 0.1 0.1 0.7 0.27 0.1 0.8 0.9 0.3

cycle twoStar 51 0.8 0.8 0.2 0.1 1.0 0.26 0.1 1.0 0.9 0.4
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Figure 10. Consensus time for different externalization and internalization rates

a — varying externalization rate πe; b — varying internalization rate πi.

We performed a clustering procedure using K-means method with input variables being
consensus time and winning rate separately [34, 35]. The resulting cluster labels are then
added to the original data. Based on these cluster labels, we observed the distribution of
the corresponding four parameters (πce , πci , πe, and πi).

Ideally, we prefer having two clusters since it allows us to determine which parameter
combinations result in respectively large or small KPIs. In practice, we specify a range for
the number of clusters k, from 1 to 20, and calculate the silhouette score [36]. In some
sense an optimal value of k is the one maximizing the silhouette score.

Since the distributions of winning rates are very close to a normal distribution, based
on clustering results of winning rate, we cannot observe any significant differences in
descriptive statistics of clusters (see Table 7). Therefore, in our future analysis we only
focus on performing a clustering analysis of consensus time.

Table 8 shows the number of elements in the clusters of consensus time, where we
selected to have two clusters since it maximizes the silhouette score.

In Figure 11, a, the distributions of consensus time are almost consistent for different
multi-layer models. At the same time, in Figure 11, b, we can clearly observe noticeable
differences. This interesting result provides us with a valuable insight that the diverse
parameter distributions can significantly prolong consensus time.

In the top right corner of Figure 11, b, we observe that when the internal structure is
complete or twoClique, parameter πci differs significantly consensus time for these models
in comparison with other models. In the lower left corner, we can see when the internal
structure is complete or twoClique, a value of πe in cluster 1 is always equal to 0.1. For the
figures in the top left and lower right corners, we can get similar conclusions by comparison.
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Таble 7. Descriptive statistics of clusters within winning rate (complete-complete-50)

Parameters Cluster Count Mean Std Min 25% 50% 75% Max

πce

0 169 0.484 0.282 0.1 0.3 0.4 0.7 1.0
1 238 0.540 0.287 0.1 0.3 0.5 0.8 1.0
2 186 0.573 0.274 0.1 0.3 0.6 0.8 1.0
3 291 0.543 0.289 0.1 0.3 0.5 0.8 1.0
...

πci

0 169 0.487 0.306 0.1 0.2 0.4 0.7 1.0
1 238 0.591 0.293 0.1 0.3 0.6 0.9 1.0
2 186 0.533 0.272 0.1 0.3 0.5 0.8 1.0
3 291 0.547 0.290 0.1 0.3 0.5 0.8 1.0
...

πe

0 169 0.509 0.290 0.1 0.3 0.5 0.7 1.0
1 238 0.581 0.304 0.1 0.3 0.6 0.9 1.0
2 186 0.525 0.292 0.1 0.3 0.5 0.8 1.0
3 291 0.587 0.282 0.1 0.4 0.6 0.8 1.0
...

πi

0 169 0.698 0.233 0.3 0.5 0.7 0.9 1.0
1 238 0.632 0.230 0.3 0.4 0.6 0.8 1.0
2 186 0.631 0.237 0.3 0.4 0.6 0.8 1.0
3 291 0.622 0.230 0.3 0.4 0.6 0.8 1.0
...

Таble 8. Consensus time cluster sizes for each model

Model Cluster 0 Cluster 1
0 complete-complete-50 3267 20
1 cycle-complete-50 3241 19
2 complete-cycle-50 3319 105
3 cycle-cycle-50 3027 400
4 complete-star-50 3219 205
5 cycle-star-50 3124 312
6 complete-twoClique-50 3239 24
7 cycle-twoClique-50 3348 11
8 complete-twoClique-51 3904 14
9 cycle-twoClique-51 3831 17
10 complete-twoStar-50 3171 197
11 cycle-twoStar-50 3100 372
12 complete-twoStar-51 3598 225
13 cycle-twoStar-51 3634 362

4. Conclusions. The paper introduces a novel approach to simulate GCVM by crea-
ting a real network instead of using statistical-physical methods for its modeling. Therefore,
our approach is suitable for any two-layer networks that are represented by (1). Addition-
ally, we use different way to extend an external cyclic structure to a complete one. We
highlight a hypothesis on how the way of extension of a circle to a complete graph influen-
ces consensus time and winning rate based on simulation results and use a statistical test
to verify them. The main conclusions are as follows:

• cyclic external structure always increases consensus time;
• cyclic external structure has a positive impact on winning rate;
• cyclic external structure influences consensus time by an increase of d, i.e. there is

a strong linear relationship between d and consensus time. The lower d is the higher is
consensus time;

188 Вестник СПбГУ. Прикладная математика. Информатика... 2024. Т. 20. Вып. 2



a

0.2 0.4 0.6 0.8 1.0

πce

0.25

0.50

0.75

1.00

P
ro
b
a
b
il
it
y

πce
ECDF

0.2 0.4 0.6 0.8 1.0

πci

0.25

0.50

0.75

1.00

P
ro
b
a
b
il
it
y

πci
ECDF

0.2 0.4 0.6 0.8 1.0

πe

0.00

0.25

0.50

0.75

1.00

P
ro
b
a
b
il
it
y

πe ECDF

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

πi

0.2

0.4

0.6

0.8

1.0

P
ro
b
a
b
il
it
y

πi ECDF

0.2 0.4 0.6 0.8 1.0

πce

0.00

0.25

0.50

0.75

1.00

P
ro
b
a
b
il
it
y

πce
ECDF

0.2 0.4 0.6 0.8 1.0

πci

0.00

0.25

0.50

0.75

1.00

P
ro
b
a
b
il
it
y

πci
ECDF

0.2 0.4 0.6 0.8 1.0

πe

0.00

0.25

0.50

0.75

1.00

P
ro
b
a
b
il
it
y

πe ECDF

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

πi

0.2

0.4

0.6

0.8

1.0

P
ro
b
a
b
il
it
y

πi ECDF

complete-complete-50

cycle-complete-50

complete-cycle-50

cycle-cycle-50

complete-star-50

cycle-star-50

complete-twoClique-50

cycle-twoClique-50

complete-twoClique-51

cycle-twoClique-51

complete-twoStar-50

cycle-twoStar-50

complete-twoStar-51

cycle-twoStar-51

b

Figure 11. Empirical cumulative distribution function of consensus time

with respect to parameters πce , πci , πe, and πi

a — cluster 0; b — cluster 1.

• the way of extension of a circle to a complete graph has a significant impact on
consensus time and winning rate;

• each parameter has a different impact on consensus time, but almost has no impact
on winning rate;

• the combination of parameters has a significant impact on consensus time.
We find the following developments of our work interesting: (i) analysis of other mea-

surements (e.g., centrality) of two-layer network structures and their impact on consensus;
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(ii) verification of other hypotheses based on data obtained in experiments, whether these
measurements are related to consensus time and winning rate; (iii) it would also be inte-
resting to incorporate stubbornness and redefine the condition for consensus to observe
an impact of stubbornness on KPIs.
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Предложена модель общего скрытого избирателя (GCVM) микроуровня, которая сфор-
мулирована для произвольной двухслойной сети (с внутренним и внешним слоями).
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Проведена серия численных экспериментов с различными сетевыми структурами и об-
наружено, что циклическая внешняя структура удлиняет время достижения консенсуса
по сравнению с полной внешней структурой. Циклическая внешняя структура положи-
тельно влияет на процент выигрышей, и этот результат отличается от результата для
макроскопической версии GCVM. Обсуждаются возможные причины этого различия.
Кроме того, в статье подтверждена гипотеза о том, что существует сильная линейная
зависимость между временем консенсуса и определенной мерой центральности в сете-
вой структуре. Проверено влияние каждого отдельного параметра на ключевые пока-
затели эффективности, включая время достижения консенсуса и процент выигрышей.
Оценивается влияние комбинаций параметров на ключевые показатели эффективности
с использованием алгоритма K-средних. Сделан вывод, что определенные комбинации
параметров могут оказать существенное влияние на время достижения консенсуса.

Ключевые слова: динамика мнений, модель избирателя, модель скрытого избирателя,
обобщенная модель скрытого избирателя, частота выигрыша.
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