
Вестник СПбГУ. Прикладная математика. Информатика... 2022. Т. 18. Вып. 2
UDC 512.552.18+003.26
MSC 16P10

Structure of a 4-dimensional algebra and generating parameters
of the hidden discrete logarithm problem

N. A. Moldovyan, A. A. Moldovyan
StPetersburg Federal Research Center of the Russian Academy of Sciences, 39, 14-ya liniya V. O.,
St Petersburg, 199178, Russian Federation

For citation: Moldovyan N. A., Moldovyan A. A. Structure of a 4-dimensional algebra and
generating parameters of the hidden discrete logarithm problem. Vestnik of Saint Petersburg
University. Applied Mathematics. Computer Science. Control Processes, 2022, vol. 18, iss. 2,
pp. 209–217. https://doi.org/10.21638/11701/spbu10.2022.202

Structure of a 4-dimensional algebra and generating parameters of the hidden discrete
logarithm problem the field GF (p) is studied in connection with using it as algebraic support
of the hidden discrete logarithm problem that is an attractive primitive of post-quantum
signature schemes. It is shown that each invertible 4-dimensional vector that is not a scalar
vector is included in a unique commutative group representing a subset of algebraic elements.
Three types of commutative groups are contained in the algebra and formulas for computing
the order and the number of groups are derived for each type. The obtained results are
used to develop algorithms for generating parameters of digital signature schemes based on
computational difficulty of the hidden logarithm problem.
Keywords: digital signature, post-quantum cryptoscheme, hidden logarithm problem, finite
non-commutative algebra, associative algebra, cyclic group.

1. Introduction. Currently the development of the public-key digital signature algo-
rithms and protocols that are resistant to attacks with using computations on a quantum
computer (quantum attacks) attracts significant attention of the cryptographic commu-
nity [1].

Usually the research activity in the area of the post-quantum public-key cryptography
is focused on the development of the public-key cryptoschemes based on the computational-
ly complex problems different from the factoring problem (FP) and the discrete logarithm
problem (DLP), since both the FP and the DLP can be solved in polynomial time on
a quantum computer [2–4].

Recently it was shown that the hidden discrete logarithm problem (HDLP) defined in
finite non-commutative associative algebras (FNAAs) set over a ground field GF (p) repre-
sents an attactive primitive for designing practical post-quantum signature algorithms [5].
The design criteria of post-quantum resistance for development of the HDLP-based signa-
ture schemes are presented in [6]. Different FNAAs had been used to set different forms
of the HDLP and to develop different types of post-quantum cryptoschemes based on
computational difficulty of the HDLP: public key-agreement protocols [7], commutative
encryption algorithms [8], and digital signature schemes [5, 9].

However, the rationale for using FNAAs as carriers of HDLP is intuitive and empirical.
Namely, it is intuitively assumed that the used algebra contains a sufficiently large number
of isomorphic finite commutative groups whose order is equal to the divisor of p2 − 1 or
to the divisor of p(p − 1). A limited experimental verification of these assumptions is
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performed. Thus, the problem of theoretical justification of these assumptions for some
fixed FNAA chosen as algebraic carrier of the HDLP-based cryptoschemes is open.

In this paper the structure of the 4-dimensional FNAA proposed in [10] for reducing
the hardware implementation cost of the HDLP-based signature scheme is studied and
formulas for computing the number of different types of commutative groups contained in
the algebra and for computing the order of the groups are obtained.

2. The studied 4-dimensional FNAA. Suppose in a finite m-dimensional vector
space set over the field GF (p) the vector multiplication of arbitrary two vectors is defined
additionally. If the vector multiplication is distributive at the right and at the left rela-
tively the addition operation, then we have a finite m-dimensional algebra. Some vector
A can be represented in two forms: A = (a0, a1, . . . , am−1) and A =

∑m−1
i=0 aiei, where

a0, a1, . . . , am−1 ∈ GF (p) are called coordinates; e0, e1, ..., em−1 are basis vectors. The
vector multiplication operation (◦) of two m-dimensional vectors A and B is defined with
the following formula:

A ◦B =

m−1∑
i=0

m−1∑
j=0

aibj(ei ◦ ej),

in which every of the products ei ◦ ej is to be substituted by a single-component vector
λek (here λ ∈ GF (p) is called structural coefficient) given in the cell at intersection
of the i-th row and j-th column of specially composed basis vector multiplication table
(BVMT). If the BVMT sets non-commutative vector multiplication possessing property
of associativity, then we have a FNAA.

Table from [10] sets a 4-dimensional FNAA proposed as algebraic carrier of the
HDLP-based signature scheme suitable for efficient hardware implementation (due to
comparatively low computational complexity of the vector multiplication). That FNAA
contains the global two-sided unit E =

(
µ−1, λ−1, 0, 0

)
. Vectors A satisfying the con-

dition a0a1 ̸= a2a3 are invertible. Vectors N = (n0, n1, n2, n3) satisfying the condi-
tion n0n1 = n2n3 are non-invertible. A non-invertible vector N such that n1 ̸= 0 and
µn0 ̸= −λn1 is locally invertible relatively a local two sided unit E′′

N for which the fol-
lowing formula is derived in [10]:

E′′
N =

(
n0

µn0 + λn1
,

n1
µn0 + λn1

,
n2

µn0 + λn1
,

n3
µn0 + λn1

)
.

The vector E′′
N is unit of some cyclic multiplicative group ΓN which is generated by the

vector N and represents a subset of the set of non-invertible vectors. Supposedly, the
considered FNAA contains sufficiently large number of the cyclic groups isomorphic to
ΓN and the latter is used as a hidden group in one of the HDLP-based signature schemes
described in [10]. One can easily show that the number of non-invertible vectors contained
in the algebra is equal to p3+ p2−p and the order Ω of the non-commutative multiplicative
group of the algebra is described by the formula

Ω = p(p− 1)
(
p2 − 1

)
= p(p− 1)2(p+ 1).

3. Commutative subalgebras. A fixed 4-dimensional vector Q = (q0, q1, q2, q3)
defines a set of pairwise permutable algebraic elements X such that Q ◦X = X ◦Q. Using
Table, one can represent the latter vector equation as the following system of four linear
equations with unknown coordinates of the vector X = (x0, x1, x2, x3):
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µx0q0 + λx3q2 − µx0q0 − λx2q3 = 0,

λx1q1 + µx2q3 − λx1q1 − µx3q2 = 0,

λx1q2 + µx2q0 − λx2q1 − µx0q2 = 0,

µx0q3 + λx3q1 − µx3q0 − λx1q3 = 0.

(1)

Consider the case (q2, q3) = (0, 0) for which the system (1) reduces to the system of two
linear equations:

x2 (µq0 − λq1) = 0,

x3 (µq0 − λq1) = 0.

From (1) one can easily see that for the vectors Q satisfying the condition µq0 = λq1
every 4-dimensional vector satisfies this system. Evidently, the said vectors Q compose
the set of scalar vectors S =

(
sµ−1, sλ−1, 0, 0

)
, where s = 0, 1, . . . , p − 1. For the vectors

Q = (q0, q1, 0, 0) satisfying the condition µq0 ̸= λq1 the solution space of the system
(1) is the set Φ of p2 vectors X = (i, j, 0, 0), where i, j = 0, 1, . . . , p − 1. The latter set
contains 2p − 1 non-invertible vectors and (p − 1)2 invertible ones (for invertible vectors
we have i ̸= 0 and j ̸= 0). The sum and product of arbitrary two elements of the set
Φ are contained in Φ, therefore Φ represents associative subalgebra that is comutative
(see Table). Multiplicative group Γ1 of this algebra has order Ω = (p − 1)2. A minimum
generator system of the group Γ1 includes two vectors of the order ω = p− 1, for example
(w, 0, 0, 0) and (0, z, 0, 0), where w and z are primitive elements modulo p.

Тable. The BVMT defining
the considered FNAA (λ ̸= 0, µ ̸= 0)

◦ e0 e1 e2 e3
e0 µe0 0 0 µe3
e1 0 λe1 λe2 0
e1 µe2 0 0 µe1
e0 0 λe3 λe0 0

Consider the case (q2, q3) ̸= (0, 0). In the system (1) the first and second equations
coincide. In addition, in the solution space of the first and second equations, the third and
fourth equations also coincide. Thus, the solution space of the system (1) coincide with
the solution space of the next system of two linear equations:

λx3q2 − x2q3 = 0,

λx1q2 + µx2q0 − λx2q1 − µx0q2 = 0.
(2)

If q2 ̸= 0, then x3 = q3q
−1
2 x2 and the solution space of the system (2) is described by the

following formula:

X = (x0, x1, x2, x3) =

(
i,
µq2i+ (λq1 − µq0) j

λq2
, j,

q3
q2
j

)
, (3)

where i, j = 0, 1, . . . , p − 1. If q3 ̸= 0, then x2 = q2q
−1
3 x3 and the solution space of the

system (2) is described by the formula

X = (x0, x1, x2, x3) =

(
i,
µq3i+ (λq1 − µq0) j

λq3
,
q2
q3
j, j

)
. (4)
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Note that for the case q2 ̸= 0 and q3 ̸= 0 the formulas (3) and (4) define the same set of
vectors X that are permutable with the vector Q. For certainty, consider the formula (3).

Proposition 1. Arbitrary two vectors X1 and X2 from the set (3) are permutable,
i. e. X1 ◦X2 = X2 ◦X1.

P r o o f. Suppose X1 =
(
i1, (µq2i1 + (λq1 − µq0) j1)λ−1q−1

2 , j1, q3q
−1
2 j1

)
and X2 =(

i2, (µq2i2 + (λq1 − µq0) j2)λ−1q−1
2 , j2, q3q

−1
2 j2

)
. Using Table and perfoming direct com-

putation of the values V1 = X1 ◦X2 and V2 = X2 ◦X1 we will obtain V1 = V2. □
Suppose Σ denotes the set of scalar vectors S = sE (s = 0, 1, . . . , p − 1) and ΦQ

denotes the set of mutually permutable vectors defined by the formula (3). Arbitrary
vector V from the set ΦQ\Σ defines the set ΦV including p2 different vectors every of
which is permutable with V . Since, due to the Proposition 1, the set ΦQ contains p2
different vectors permutable with V (including V ) we have come to the two conclusions.

Proposition 2. Arbitrary vector V ∈ ΦQ\Σ defines the set ΦV of vectors permutable
with V , which coincides with ΦQ, i. e. ΦV = ΦQ.

Proposition 3. Arbitrary vector V that is not a scalar vector is included in a unique
set of paiwise permutable vectors.

Arbitrary fixed set Φ represents a commutative associative subalgebra of the conside-
red 4-dimensional FNAA. Evidently, every scalar vector S is included in each of the sets
of pairwise permutable vectors. Other p4 − p non-zero vectors are distributed among ηΦ
different sets Φ each of which contains p2−p unique non-scalar vectors, therefore, we have
the following formula for the number of the Φ subalgebras:

ηΦ =
p4 − p
p2 − p

= p2 + p+ 1. (5)

In general case different subalgebras contain finite multiplicative groups ΓΦ of different
orders ΩΓΦ

and types.
4. Three types of commutative groups. Consider a fixed ΦQ subalgebra for some

vector Q that satisfies the non-equalities q2 ̸= 0 and q3 ̸= 0. The order of its multiplicative
group is equal to p2 minus the number ηN of non-invertible vectors contained in the
subalgebra. From the non-invertibility condition x0x1 = x2x3 and the formula (3) we have
the equation

λq3j
2 − (λq1 − µq0) ij − µq2i2 = 0. (6)

The number of different pairs (i, j) satisfying the equation (6) gives the value of ηN . For
i = 0 we get j = 0. In the case i ̸= 0, solving the equation (6) relatively the unknown
value j, we get

j =

(
(λq1 − µq0)

2λq3
±
√
∆

)
, i = 0, (7)

∆ =
(λq1 − µq0)2

4λ2q23
+
µq2
λq3

. (8)

The value of ∆ defines three types of multiplicative group of the commutative subal-
gebras Φ: i) ∆ is a quadratic non-residue modulo p; ii) ∆ is a quadratic residue modulo
p; iii) ∆ = 0.

Case i): subalgebra ΦQ contains one non-invertible vector (0, 0, 0, 0) and ηN = 1.
Therefore, all non-zero vectors are ivertible and ΦQ represents the finite field of the order
p2. The group ΓΦ is cyclic as multiplicative group of a field and ΩΓΦ

= p2 − 1. A group of
such type is denoted as Γ1.
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Case ii):
√
∆ = δ ̸= 0. For every value i = 1, 2, . . . , p − 1 we have two unique

solutions of the equation (3): j =
(
(λq1 − µq0) (2λq3)−1 ± δ

)
i. Thus, taking into account

zero vector, we have ηN = 2p − 1 and ΩΓΦ
= p2 − (2p − 1) = (p − 1)2. A vector

V = (a, b, 0, 0) /∈ Σ defines a subalgebra ΦV multiplicative group of which ΓΦV
has order

equal to (p− 1)2 and contains a minimum generator system including two vectors G1 and
G2 of the same order equal to p−1. Suppose the vector W is a generator of a cyclic group
ΓΦ of the order p2−1. Then the formula F (X) =W−i ◦X ◦W i defines p2−1 different (in
general case) isomorphic maps of the group ΓΦV

to different groups ΓΦ. Evidently, every
of the lasts contains a minimum generator system including two vectors of the order p−1.
Thus, if ∆ is a quadratic residue in GF (p), then the formula (3) defines a ΦQ algebra that
contains a multiplicative group generated by a minimum generators system including two
vectors of the order p−1 (in terms of the paper [11] a finite commutative group generated
by a minimum generator system including k elements of the same order is called a group
with k-dimensional cyclicity). A group of the second type is denoted as Γ2.

Case iii):
√
∆ = 0. For every value of i = 0, 1, 2, . . . , p − 1 we have one unique

solutions of the equation (6): j = (λq1 − µq0) (2λq3)−1
i. Thus, we have ηN = p and

ΩΓΦ
= p2 − p = p(p − 1). For a primitive element α ∈ GF (p) the order of scalar vector

S = αE is equal to p− 1. Definitely, the group ΓΦ contains a vector V of the order p. The
vector W = V ◦ S is contained in ΓΦ and has order equal to p(p − 1), since the values p
and p−1 are mutually prime. The vectors W i (i = 1, 2, . . . , p(p−1)) are pairwise different
and each of them is contained in ΓΦ, therefore, one can conclude the group ΓΦ is cyclic.
A group of the third type is denoted as Γ3.

5. On the number of groups of the same type. Due to the Proposition 3 one
can write the equation

(ΩΓ1
− (#Σ− 1)) d+ (ΩΓ2

− (#Σ− 1)) t+ (ΩΓ3
− (#Σ− 1))u =

= p(p− 1)
(
p2 − 1

)
− (#Σ− 1) ,

(9)

where unknown integer values d, t, and u denote number of the groups Γ1, Γ2, and Γ3,
respectively, contained in the considered 4-dimensional FNAA. Substituting the values
ΩΓ1

= p2 − 1, ΩΓ2
= (p− 1)2, ΩΓ3

= p(p− 1), and #Σ = p in equation (9) one can get

pd+ (p− 2)t+ (p− 1)u = p3 − p− 1. (10)

The value of the sum d + t + u is the number of different Φ subalgebras contained in the
FNAA, therefore, due to equality (5) one can write

d+ t+ u = p2 + p+ 1. (11)

From (10) and (11) it is easy to obtain the following equalities:

2t+ u = (p+ 1)2, 2d+ u = p2 + 1. (12)

To find the unknown value u, consider the number of all non-invertible vectors Q that
defines the ΦQ algebras containing the groups of the Γ3 type. For a non-invertible vector
Q the equality q0q1 = q2q3 holds true and the formulas (7) and (8) can be represented in
the form

j =
λq1 − µq0 ± (λq1 + µq0)

2λq3
i, ∆ =

(λq1 + µq0)
2

4λ2q23
.
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The case ∆ = 0 corresponds to fulfillment of the condition λq1 = −µq0. If q0 = q1 = 0,
then the system (3) take on the following form:

λx3q2 − λx2q3 = 0,

µx0q3 − λx1q3 = 0.
(13)

Since additional condition (q2, q3) = (0, 0) leads to trivial case Q = (0, 0, 0, 0), at least, we
have q3 ̸= 0 or q2 ̸= 0. For certainty, consider the case q3 ̸= 0 (the value of q2 is arbitrary).
The solution space of the system (13) that sets the ΦQ subalgebra is described by the
formula

X = (x0, x1, x2, x3) =

(
i,
µ

λ
i,
q2
q3
j, j

)
,

where i, j = 0, 1, . . . , p− 1. The non-invertible vectors contained in ΦQ satisfy the condition

i2 =
λq2
µq3

j2.

If the value λq2 (µq3)
−1 is a quadratic non-residue, then ΦQ includes only one non-

invertible vector, namely, (0, 0, 0, 0) and multiplicative group of the Γ1-type. If the value

λq2 (µq3)
−1 is a quadratic residue and i = ±j

√
λq2 (µq3)

−1, then ΦQ includes 2p − 1
non-invertible vectors and multiplicative group of the Γ2-type. If q3 ̸= 0 and q2 = 0, then
ΦQ includes p non-invertible vectors having the form (0, 0, 0, j) and multiplicative group
of the Γ3-type (evidently, every of the vectors (0, 0, 0, j) sets subalgebra Φ(0,0,0,j) = ΦQ).
Similarly, for the case q2 ̸= 0 and q3 = 0, each of the vectors Q = (0, 0, q2, 0) defines
a fixed Φ algebra that includes p non-invertible vectors having the form (0, 0, j, 0) and
a multiplicative group of the Γ3-type.

Thus, the case q0 = q1 = 0 gives two different ΦQ subalgebras each of which contains
a group of the Γ3 type. For the values q0 ̸= 0 and q1 ̸= 0 we have p− 1 different variants
of fulfillment of the condition λq1 = −µq0. Every of the said variants for each value q3 ∈
{1, 2, . . . , p − 1} defines a unique non-invertible vector Q setting a unique ΦQ subalgebra
containing a group of the Γ3-type.

In the case q0 ̸= 0 or q1 ̸= 0, we have (p − 1)2 vectors defining the ΦQ subalgebras
containing a group of the Γ3-type. For the case q0 = 0 and q1 = 0, we have 2(p − 1)
additional vectors of the said type. Totally, in the considered FNAA we have (p − 1)2 +
2(p − 1) non-invertible vectors defining the ΦQ subalgebras each of which contains p − 1
vectors of the considered type. Therefore, we have

u =
(p− 1)2 + 2(p− 1)

p− 1
= p+ 1. (14)

Substituting the value of u in (12) we obtain:

d =
p(p− 1)

2
, t =

p(p+ 1)

2
. (15)

6. Discussion. The post-quantum signature schemes with a hidden group can be
divided into the following two types: i) algorithms based on the computational difficulty
of the HDLP; ii) algorithms based on computational difficulty of solving systems of many
quadratic equations with many unknowns [12]. Post-quantum security of second type al-
gorithms is related to the fact that the quantum computer is ineffective to solve systems
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of many quadratic equations [13, 14]. Usually the FNAAs used as carriers of the algebraic
signature algorithms with a hidden group are set over a ground field GF (p) with charac-
teristic p of sufficiently large size z (z = 256 to 512 bits). Besides, the value of p is to be
selected so that one can select a hidden cyclic group of sufficiently large prime order. To
implement a masking mechanism one should use an algebraic carrier containing sufficiently
large number of cyclic groups of the same order. The larger this number, the more resistant
the masking mechanism appears. The derived formulas (14) and (15) clearly show that
the number of the commutative groups of every of the types Γ1, Γ2, and Γ3 is sufficiently
large, therefore the hidden group can be potentially selected in a set of groups of every of
these types. However, it seems preferable to select a hidden group from one of the Γ1 and
Γ2 sets, since the number of the Γ3-type groups is significantly lower: d/u ≈ t/u ≈ p.

For designing a signature scheme with a cyclic hidden group one can generate a prime
p = 2q + 1, where q is also a prime, and compute a vector H of order q as generator of
the hidden cyclic group. The vector H can be selected from groups of Γ1- or Γ2-types. An
alternative possibility of using a cyclic hidden group relate to generating a prime p = 2q−1
with prime q. In the latter case the generator H of hidden group of order q is to be chosen
only from set of the Γ1-type groups. Algorithm for generating a vector H of order q is as
follows:
• select at random an invertible vector R ̸= E;

• compute the vector H = R
p2−1

q ;
• if H ̸= E, then output the vector H. Otherwise go to step 1.
For designing a signature scheme with commutative hidden group possessing 2-di-

mensional cyclicity (see, for example, [6, 12]) the considered 4-dimensional FNAA is to be
set over GF (p) with characteristic p = 2q + 1, where q is a prime. To set a hidden group
of the order q2, which possesses 2-dimensional cyclicity, one should compute generators
H1 and H2 of the order q, which generate two different cyclic groups contained in the
same group of the Γ2-type. Algorithm for generating vectors H1 and H2 that represent
a minimum generator system of the hidden group of the order q2 is as follows:
• select at random an invertible vector Q = (q0, q1, q2, q3) such that {q2 ̸= 0; q3 ̸= 0}

and, using the formula (8), compute the value of ∆;
• if ∆ is a quadratic non-residue, then go to step 1. Otherwise set integer variable

i = 1;
• using the formula (7), compute the integer j;
• using the formula (3), compute the vector X = (x0, x1, x2, x3);
• if x0x1 = x2x3, then set the variable i← i+1 and go to step 3. Otherwise compute

the vector H1 = X
p−1
q ;

• if H1 = E, then set the variable i← i+1 and go to step 3. Otherwise generate a pri-
mitive element α ∈ GF (p) and compute the scalar vector S = αE =

(
αµ−1, αλ−1, 0, 0

)
;

• generate a random integer k < q and compute the vector H2 = S
p−1
q ◦ Hk

1 . Then
output the vectors H1 and H2.

Using a Γ3-type group to set a hidden cyclic group of order p is of potential interest to
insure a higher perfomance of the computational procedures of the HDLP-based signature
schemes, since for the values p having the structure p = 2z+c, where value of c is small, the
multiplication modulo p can be implemented without performing the arithmetic division
operation. Algorithm for generating a vector H of order p is as follows:

a) select arbitrary three values 0 < q0, q1, q3 < p − 1 and compute the value q2 =

− (λq1 − µq0)2 (4λµq3)−1 for which we have ∆ = 0 (see (8));
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b) compute the vector H = (q0, q1, q2, q3)
p−1;

c) if H = E, then go to step 1. Else output the vector H as a generator of a hidden
cyclic group.

7. Conclusion. The results obtained show the studied 4-dimensional FNAA defined
by a sparse BVMT over a ground field GF (p) can be represented as a set of commutative
subalgebras intersecting in a set of scalar vectors. Three types of subalgebras can be
distinguished: i) containing a cyclic group of the order p2−1; ii) containing a group of the
order (p − 1)2, which has a 2-dimensional cyclicity; iii) containing a cyclic group of the
order p(p− 1). Formulas for the number of groups of each type were derived. Algorithms
for generating the invertible vectors of the required order, wich are contained in a group
of given type, are presented.
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Структура одной четырехмерной алгебры и генерация
параметров скрытой задачи дискретного логарифмирования

Н. А. Молдовян, А. А. Молдовян

Санкт-Петербургский федеральный исследовательский центр Российской академии наук,
Российская Федерация, 199178, Санкт-Петербург, В. О., 14-я линия, 39

Для цитирования: Moldovyan N. A., Moldovyan A. A. Structure of a 4-dimensional algebra
and generating parameters of the hidden discrete logarithm problem // Вестник Санкт-Петер-
бургского университета. Прикладная математика. Информатика. Процессы управления.
2022. Т. 18. Вып. 2. С. 209–217. https://doi.org/10.21638/11701/spbu10.2022.202

Строение одной четырехмерной конечной некоммутативной ассоциативной алгебры, за-
данной над полем GF (p), изучено в плане ее использования в качестве алгебраического
носителя скрытой задачи дискретного логарифмирования. Показано, что каждый об-
ратимый вектор, не относящийся к скалярным, включается в единственную коммута-
тивную группу, которая является подмножеством алгебраических элементов. Три типа
коммутативных групп содержатся в алгебре, и выведены формулы для вычисления
порядка и числа групп каждого типа. Полученные результаты использованы для раз-
работки алгоритмов генерации параметров схем цифровой подписи, основанных на вы-
числительной трудности скрытой задачи логарифмирования.
Ключевые слова: цифровая подпись, постквантовая криптосхема, скрытая задача лога-
рифмирования, конечная некоммутативная алгебра, ассоциативная алгебра, цикличе-
ская группа.
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