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Structure of a 4-dimensional algebra and generating parameters of the hidden discrete
logarithm problem the field GF'(p) is studied in connection with using it as algebraic support
of the hidden discrete logarithm problem that is an attractive primitive of post-quantum
signature schemes. It is shown that each invertible 4-dimensional vector that is not a scalar
vector is included in a unique commutative group representing a subset of algebraic elements.
Three types of commutative groups are contained in the algebra and formulas for computing
the order and the number of groups are derived for each type. The obtained results are
used to develop algorithms for generating parameters of digital signature schemes based on
computational difficulty of the hidden logarithm problem.
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1. Introduction. Currently the development of the public-key digital signature algo-
rithms and protocols that are resistant to attacks with using computations on a quantum
computer (quantum attacks) attracts significant attention of the cryptographic commu-
nity [1].

Usually the research activity in the area of the post-quantum public-key cryptography
is focused on the development of the public-key cryptoschemes based on the computational-
ly complex problems different from the factoring problem (FP) and the discrete logarithm
problem (DLP), since both the FP and the DLP can be solved in polynomial time on
a quantum computer [2—4].

Recently it was shown that the hidden discrete logarithm problem (HDLP) defined in
finite non-commutative associative algebras (FNAASs) set over a ground field GF(p) repre-
sents an attactive primitive for designing practical post-quantum signature algorithms [5].
The design criteria of post-quantum resistance for development of the HDLP-based signa-
ture schemes are presented in [6]. Different FNAAs had been used to set different forms
of the HDLP and to develop different types of post-quantum cryptoschemes based on
computational difficulty of the HDLP: public key-agreement protocols [7], commutative
encryption algorithms [8], and digital signature schemes [5, 9].

However, the rationale for using FNA As as carriers of HDLP is intuitive and empirical.
Namely, it is intuitively assumed that the used algebra contains a sufficiently large number
of isomorphic finite commutative groups whose order is equal to the divisor of p> — 1 or
to the divisor of p(p — 1). A limited experimental verification of these assumptions is
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performed. Thus, the problem of theoretical justification of these assumptions for some
fixed FNAA chosen as algebraic carrier of the HDLP-based cryptoschemes is open.

In this paper the structure of the 4-dimensional FNAA proposed in [10] for reducing
the hardware implementation cost of the HDLP-based signature scheme is studied and
formulas for computing the number of different types of commutative groups contained in
the algebra and for computing the order of the groups are obtained.

2. The studied 4-dimensional FNAA. Suppose in a finite m-dimensional vector
space set over the field GF(p) the vector multiplication of arbitrary two vectors is defined
additionally. If the vector multiplication is distributive at the right and at the left rela-
tively the addition operation, then we have a finite m-dimensional algebra. Some vector
A can be represented in two forms: A = (ag,a1,...,am-1) and A = Z?jol a;e;, where
ap,a, ..., am—1 € GF(p) are called coordinates; eq, e, ..., €,_1 are basis vectors. The
vector multiplication operation (o) of two m-dimensional vectors A and B is defined with

the following formula:
m—1m—1

AoB= Z Z a;bj(e; oej),

i=0 j=0
in which every of the products e; o e; is to be substituted by a single-component vector
dex (here A € GF(p) is called structural coeflicient) given in the cell at intersection
of the i-th row and j-th column of specially composed basis vector multiplication table
(BVMT). If the BVMT sets non-commutative vector multiplication possessing property
of associativity, then we have a FNAA.

Table from [10] sets a 4-dimensional FNAA proposed as algebraic carrier of the
HDLP-based signature scheme suitable for efficient hardware implementation (due to
comparatively low computational complexity of the vector multiplication). That FNAA
contains the global two-sided unit £ = (p=', A7*,0,0). Vectors A satisfying the con-
dition apa; # asas are invertible. Vectors N = (ng,n1,ne,ns) satisfying the condi-
tion mgni; = nong are non-invertible. A non-invertible vector N such that n; # 0 and
ung # —Anq is locally invertible relatively a local two sided unit E’, for which the fol-
lowing formula is derived in [10]:

E = no ni no ns
N Hng —+ )\nl ’ ;mo + )\77,1 ’ Hng —+ /\n1 ’ uno —+ )\77,1 ’

The vector E’% is unit of some cyclic multiplicative group I'y which is generated by the
vector N and represents a subset of the set of non-invertible vectors. Supposedly, the
considered FNAA contains sufficiently large number of the cyclic groups isomorphic to
I'y and the latter is used as a hidden group in one of the HDLP-based signature schemes
described in [10]. One can easily show that the number of non-invertible vectors contained
in the algebra is equal to p>+ p?—p and the order 2 of the non-commutative multiplicative
group of the algebra is described by the formula

Q=pp-1)(p*-1) =p(p—1)*(p+1).

3. Commutative subalgebras. A fixed 4-dimensional vector @ = (qo,q1,42,q3)
defines a set of pairwise permutable algebraic elements X such that Qo X = X o Q. Using
Table, one can represent the latter vector equation as the following system of four linear
equations with unknown coordinates of the vector X = (zg, z1, z2, x3):
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progdo + AT3q2 — progo — Ar2qs = 0,
AT1q1 + preqs — AT1q1 — prsqe =0,
AT1G2 + praqo — AT2q1 — proqe = 0,
HToq3 + AT3q1 — pr3qo — Ar1gz = 0.

(1)

Consider the case (g2, ¢3) = (0,0) for which the system (1) reduces to the system of two
linear equations:

w2 (go — Aq1) = 0,
x3 (go — Aq1) = 0.

From (1) one can easily see that for the vectors @ satisfying the condition pugy = Mg
every 4-dimensional vector satisfies this system. Evidently, the said vectors ) compose
the set of scalar vectors § = (su‘l, sA™L O,O)7 where s = 0,1,...,p — 1. For the vectors
Q = (qo,q1,0,0) satisfying the condition pugy # Mg the solution space of the system
(1) is the set ® of p? vectors X = (i,4,0,0), where i,j = 0,1,...,p — 1. The latter set
contains 2p — 1 non-invertible vectors and (p — 1)? invertible ones (for invertible vectors
we have i # 0 and j # 0). The sum and product of arbitrary two elements of the set
® are contained in ®, therefore ® represents associative subalgebra that is comutative
(see Table). Multiplicative group I'y of this algebra has order 2 = (p — 1)2. A minimum
generator system of the group I'; includes two vectors of the order w = p — 1, for example
(w,0,0,0) and (0, 2,0,0), where w and z are primitive elements modulo p.

Table. The BVMT defining
the considered FNAA (A # 0, u # 0)

o eg e e es
€eg neo 0 0 pes
e 0 e ez 0
e1 | pes 0 0 prey
€eq 0 Aes Aeg 0

Consider the case (gz2,¢3) # (0,0). In the system (1) the first and second equations
coincide. In addition, in the solution space of the first and second equations, the third and
fourth equations also coincide. Thus, the solution space of the system (1) coincide with
the solution space of the next system of two linear equations:

Ax3q2 — T2q3 = 0,
AT1G2 + pxaqo — AT2q1 — proge = 0.

(2)

If g2 # 0, then z3 = ngz_lxg and the solution space of the system (2) is described by the
following formula:

2JI

O .
X = (0,0, 29, 75) — (Z MQ2Z+()\QI 14q0) J i 613])7 3)
q2 q2

where 4,7 = 0,1,...,p — 1. If g3 # 0, then x5 = ngglxg and the solution space of the
system (2) is described by the formula

. Aor — )
X = (l‘o,l‘l,.’ljg,xg) = (Z, Hg3t +( q1 /”'qO)J CDJJ) . (4)

)

Ag3 g3
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Note that for the case g2 # 0 and ¢3 # 0 the formulas (3) and (4) define the same set of
vectors X that are permutable with the vector Q. For certainty, consider the formula (3).

Proposition 1. Arbitrary two vectors X; and X, from the set (3) are permutable,
1. e. X10X2 :XQOXl.

P roof Suppose X1 = (i1, (pgai1 + (Aq1 — pgo) j1) A1z ", 1, a3q5 ' 1) and X =
(ig, (1g2iz + (A\q1 — 11qo) j2) X" rq5 *, jas nggljg). Using Table and perfoming direct com-
putation of the values Vi = X7 o X5 and V5 = X5 0 X; we will obtain V; = V5. O

Suppose ¥ denotes the set of scalar vectors S = sE (s = 0,1,...,p — 1) and ®¢
denotes the set of mutually permutable vectors defined by the formula (3). Arbitrary
vector V' from the set ®o\X defines the set ®y including p? different vectors every of
which is permutable with V. Since, due to the Proposition 1, the set ®¢ contains p?
different vectors permutable with V' (including V') we have come to the two conclusions.

Proposition 2. Arbitrary vector V € ®\X defines the set @y of vectors permutable
with V', which coincides with ®¢, i. e. &y = ®¢.

Proposition 3. Arbitrary vector V that is not a scalar vector is included in a unique
set of paiwise permutable vectors.

Arbitrary fixed set ® represents a commutative associative subalgebra of the conside-
red 4-dimensional FNAA. Evidently, every scalar vector S is included in each of the sets
of pairwise permutable vectors. Other p* — p non-zero vectors are distributed among 7¢
different sets ® each of which contains p? — p unique non-scalar vectors, therefore, we have
the following formula for the number of the ® subalgebras:

p —p
-p

In general case different subalgebras contain finite multiplicative groups I'¢ of different
orders Qr, and types.

4. Three types of commutative groups. Consider a fixed ®¢ subalgebra for some
vector () that satisfies the non-equalities g2 # 0 and g3 # 0. The order of its multiplicative
group is equal to p? minus the number ny of non-invertible vectors contained in the
subalgebra. From the non-invertibility condition z¢z; = zox3 and the formula (3) we have
the equation

=p’+p+1 (5)

Agsi® — (A1 — pgo) ij — pgai® = 0. (6)

The number of different pairs (4, j) satisfying the equation (6) gives the value of ny. For
i =0 we get 5 = 0. In the case i # 0, solving the equation (6) relatively the unknown
value j, we get

j:(@ql—ﬂqo)i\/g)i:o, (7)

2/\(]3
— ()‘ql - /U‘QO)2 @ (8)
AN%q3 Ags

The value of A defines three types of multiplicative group of the commutative subal-
gebras ®: i) A is a quadratic non-residue modulo p; ii) A is a quadratic residue modulo
p; iii) A =0.

Case 1): subalgebra ®¢ contains one non-invertible vector (0,0,0,0) and ny = 1.
Therefore, all non-zero vectors are ivertible and ®¢ represents the finite field of the order
p?. The group I'g is cyclic as multiplicative group of a field and Qr, = p®> — 1. A group of
such type is denoted as I';.
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Case ii): VA = § # 0. For every value i = 1,2,...,p — 1 we have two unique
solutions of the equation (3): j = (()\ql — 11q0) (2)\q3)71 + 5) 1. Thus, taking into account

zero vector, we have ny = 2p — 1 and Qr, = p> — (2p — 1) = (p — 1)%. A vector
V = (a,b,0,0) ¢ X defines a subalgebra @y multiplicative group of which I'g,, has order
equal to (p — 1)? and contains a minimum generator system including two vectors G; and
G5 of the same order equal to p— 1. Suppose the vector W is a generator of a cyclic group
Ty of the order p? — 1. Then the formula F(X) = W~%0 X o W defines p? — 1 different (in
general case) isomorphic maps of the group I's, to different groups I's. Evidently, every
of the lasts contains a minimum generator system including two vectors of the order p— 1.
Thus, if A is a quadratic residue in GF(p), then the formula (3) defines a ®¢ algebra that
contains a multiplicative group generated by a minimum generators system including two
vectors of the order p—1 (in terms of the paper [11] a finite commutative group generated
by a minimum generator system including k elements of the same order is called a group
with k-dimensional cyclicity). A group of the second type is denoted as T's.

Case iii): VA = 0. For every value of i = 0,1,2,...,p — 1 we have one unique
solutions of the equation (6): j = (Ag1 — pqo) (2)\q3)_1 7. Thus, we have ny = p and
Qr, = p?> —p = p(p — 1). For a primitive element o € GF(p) the order of scalar vector
S = aF is equal to p — 1. Definitely, the group I'¢ contains a vector V of the order p. The
vector W =V o S is contained in 'y and has order equal to p(p — 1), since the values p
and p — 1 are mutually prime. The vectors W' (i = 1,2,...,p(p—1)) are pairwise different
and each of them is contained in I'¢, therefore, one can conclude the group I'g is cyclic.
A group of the third type is denoted as I's.

5. On the number of groups of the same type. Due to the Proposition 3 one
can write the equation

(Cr, —(#E-1))d+ (Qr, — (#E - 1))t + (O, — (#FX - 1) u =
=plp—-1)(P*—1) - #E-1),
where unknown integer values d, ¢, and u denote number of the groups I'y, 'y, and I's,

respectively, contained in the considered 4-dimensional FNAA. Substituting the values
Qr, =p* -1, Qr, = (p—1)2, Qr, = p(p — 1), and #% = p in equation (9) one can get

9)

pd+(p—2)t+(p—-Du=p*—p—1. (10)

The value of the sum d + ¢ + u is the number of different ® subalgebras contained in the
FNAA, therefore, due to equality (5) one can write

d+t+u=p*+p+1. (11)
From (10) and (11) it is easy to obtain the following equalities:

2 4+u=(p+1)=3 2d +u=p? + 1. (12)

To find the unknown value u, consider the number of all non-invertible vectors @ that
defines the ®¢ algebras containing the groups of the I's type. For a non-invertible vector
@ the equality goq1 = g2g3 holds true and the formulas (7) and (8) can be represented in
the form

jo Mt Qo pg), ot 10)°

2)q3 v 4¢3
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The case A = 0 corresponds to fulfillment of the condition A\q; = —puqo- If g9 = ¢1 = 0,
then the system (3) take on the following form:

AT3q2 — Axaqs = 0,
392 243 (13)
Hxogz — Ar1q3z = 0.
Since additional condition (g2, ¢3) = (0, 0) leads to trivial case @ = (0,0,0,0), at least, we
have g3 # 0 or g2 # 0. For certainty, consider the case g3 # 0 (the value of ¢o is arbitrary).
The solution space of the system (13) that sets the ®¢ subalgebra is described by the
formula

. . 492 . .
X = (5007371,1'2,133) = <Z7 HZ ;jv j>7
3

)\ )
wherei,j = 0,1,...,p— 1. The non-invertible vectors contained in @ satisfy the condition
A
2 =225
Haq3

If the value Ago (,uq;;)il is a quadratic non-residue, then ®g includes only one non-
invertible vector, namely, (0,0,0,0) and multiplicative group of the I';-type. If the value

Ago (uq;),)_l is a quadratic residue and i = ij\://\qg (1gs) ™", then ®q includes 2p — 1
non-invertible vectors and multiplicative group of the I's-type. If g3 # 0 and g3 = 0, then
® includes p non-invertible vectors having the form (0, 0,0, 7) and multiplicative group
of the I'3-type (evidently, every of the vectors (0,0,0, j) sets subalgebra ® 0,0, = ®q)-
Similarly, for the case g2 # 0 and g3 = 0, each of the vectors @ = (0,0, g2,0) defines
a fixed ® algebra that includes p non-invertible vectors having the form (0,0, j,0) and
a multiplicative group of the I's-type.

Thus, the case gy = ¢1 = 0 gives two different ®g subalgebras each of which contains
a group of the I's type. For the values ¢y # 0 and ¢; # 0 we have p — 1 different variants
of fulfillment of the condition Aq; = —pugqe. Every of the said variants for each value g3 €
{1,2,...,p — 1} defines a unique non-invertible vector @ setting a unique ®¢ subalgebra
containing a group of the I's-type.

In the case qo # 0 or ¢1 # 0, we have (p — 1)? vectors defining the ® subalgebras
containing a group of the I's-type. For the case go = 0 and ¢; = 0, we have 2(p — 1)
additional vectors of the said type. Totally, in the considered FNAA we have (p — 1)? +
2(p — 1) non-invertible vectors defining the ®¢ subalgebras each of which contains p — 1
vectors of the considered type. Therefore, we have

(P—1)%+2(p—1)

= = 1. 14
u ) p+ (14)

Substituting the value of « in (12) we obtain:

p(p—1) ,_pp+1)
2 2

6. Discussion. The post-quantum signature schemes with a hidden group can be
divided into the following two types: i) algorithms based on the computational difficulty
of the HDLP; ii) algorithms based on computational difficulty of solving systems of many
quadratic equations with many unknowns [12]. Post-quantum security of second type al-
gorithms is related to the fact that the quantum computer is ineffective to solve systems

d= (15)
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of many quadratic equations [13, 14]. Usually the FNAAs used as carriers of the algebraic
signature algorithms with a hidden group are set over a ground field GF(p) with charac-
teristic p of sufficiently large size z (z = 256 to 512 bits). Besides, the value of p is to be
selected so that one can select a hidden cyclic group of sufficiently large prime order. To
implement a masking mechanism one should use an algebraic carrier containing sufficiently
large number of cyclic groups of the same order. The larger this number, the more resistant
the masking mechanism appears. The derived formulas (14) and (15) clearly show that
the number of the commutative groups of every of the types I'y, I's, and I's is sufficiently
large, therefore the hidden group can be potentially selected in a set of groups of every of
these types. However, it seems preferable to select a hidden group from one of the I'; and
I'; sets, since the number of the I's-type groups is significantly lower: d/u = t/u ~ p.

For designing a signature scheme with a cyclic hidden group one can generate a prime
p = 2q + 1, where ¢ is also a prime, and compute a vector H of order ¢ as generator of
the hidden cyclic group. The vector H can be selected from groups of I'y- or I's-types. An
alternative possibility of using a cyclic hidden group relate to generating a prime p = 2g—1
with prime g. In the latter case the generator H of hidden group of order ¢ is to be chosen
only from set of the I';-type groups. Algorithm for generating a vector H of order ¢ is as
follows:

e select at random an invertible vector R # F;
21
e compute the vector H = R ;

e if H = E, then output the vector H. Otherwise go to step 1.

For designing a signature scheme with commutative hidden group possessing 2-di-
mensional cyclicity (see, for example, [6, 12]) the considered 4-dimensional FNAA is to be
set over GF(p) with characteristic p = 2¢q + 1, where ¢ is a prime. To set a hidden group
of the order ¢2, which possesses 2-dimensional cyclicity, one should compute generators
H, and Hs of the order g, which generate two different cyclic groups contained in the
same group of the I's-type. Algorithm for generating vectors H; and Hs that represent
a minimum generator system of the hidden group of the order ¢ is as follows:

e select at random an invertible vector @ = (qo, g1, g2, g3) such that {g2 # 0; g3 # 0}
and, using the formula (8), compute the value of A;

e if A is a quadratic non-residue, then go to step 1. Otherwise set integer variable
1 =1;

e using the formula (7), compute the integer j;

e using the formula (3), compute the vector X = (xq, x1, x2, T3);

e if xgx1 = woxs, then set the variable ¢ <— ¢+ 1 and go to step 3. Otherwise compute
the vector H; = X%;

e if H; = FE, then set the variable i «+— i+ 1 and go to step 3. Otherwise generate a pri-
mitive element o € GF(p) and compute the scalar vector S = aF = (oz,u_l, ar™1,0, O);

e generate a random integer £ < ¢ and compute the vector Hy = S5 o HFf. Then
output the vectors H; and Hs.

Using a I's-type group to set a hidden cyclic group of order p is of potential interest to
insure a higher perfomance of the computational procedures of the HDLP-based signature
schemes, since for the values p having the structure p = 2%+ ¢, where value of ¢ is small, the
multiplication modulo p can be implemented without performing the arithmetic division
operation. Algorithm for generating a vector H of order p is as follows:

a) select arbitrary three values 0 < ¢o,¢1,93 < p — 1 and compute the value go =

— (Aq1 — pgo)” (4hugs) " for which we have A = 0 (see (8));
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b) compute the vector H = (qo, q1, g2, qg)p_l;

c) if H = E, then go to step 1. Else output the vector H as a generator of a hidden
cyclic group.

7. Conclusion. The results obtained show the studied 4-dimensional FNAA defined
by a sparse BVMT over a ground field GF(p) can be represented as a set of commutative
subalgebras intersecting in a set of scalar vectors. Three types of subalgebras can be
distinguished: i) containing a cyclic group of the order p? — 1; ii) containing a group of the
order (p — 1)2, which has a 2-dimensional cyclicity; iii) containing a cyclic group of the
order p(p — 1). Formulas for the number of groups of each type were derived. Algorithms
for generating the invertible vectors of the required order, wich are contained in a group
of given type, are presented.

References

1. Post-quantum cryptography. 10th International Conference, PQCrypto 2019, Chongging, China,
May 8-10, 2019, Proceedings. Lecture Notes in Computer Science series. Cham, Springer Publ., 2019,
vol. 11505, pp. 1-269.

2. Shor P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on quantum
computer. SIAM Journal of Computing, 1997, vol. 26, pp. 1484-1509.

3. Jozsa R. Quantum algorithms and the fourier transform. Proc. Roy. Soc. London. Series A, 1998,
vol. 454, pp. 323-337.

4. Yan S. Y. Quantum attacks on public-key cryptosystems. Boston, Springer Publ., 2013, 207 p.

5. Moldovyan D. N. New form of the hidden logarithm problem and its algebraic support. Bulletin
of Academy of Sciences of Moldova. Mathematics, 2020, no. 2(93), pp. 3-10.

6. Moldovyan N. A., Moldovyan A. A. Candidate for practical post-quantum signature scheme. Vest-
nik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2020,
vol. 16, iss. 4, pp. 455-461. https://doi.org/10.21638/11701/spbul0.2020.410

7. Moldovyan D. N. Post-quantum public key-agreement scheme based on a new form of the hidden
logarithm problem. Computer Science Journal of Moldova, 2019, vol. 27, no. 1(79), pp. 56-72.

8. Moldovyan A. A., Moldovyan D. N., Moldovyan N. A. Post-quantum commutative encryption
algorithm. Computer Science Journal of Moldova, 2019, vol. 27, no. 3(81), pp. 299-317.

9. Moldovyan D. N. A unified method for setting finite non-commutative associative algebras and
their properties. Quasigroups and Related Systems, 2019, vol. 27, no. 2, pp. 293-308.

10. Moldovyan D. N., Moldovyan A. A., Moldovyan N. A. Post-quantum signature schemes for effi-
cient hardware implementation. Microprocessors and Microsystems, 2021, vol. 80, pp. 103487.
https://doi.org/10.1016/j.micpro.2020.103487

11. Moldovyan N. A., Moldovyanu P. A. New primitives for digital signature algorithms. Quasigroups
and Related Systems, 2009, vol. 17, no. 2, pp. 271-282.

12. Moldovyan D. N., Moldovyan A. A., Moldovyan N. A. A new concept for designing post-quantum
digital signature algorithms on non-commutative algebras. Voprosy kiberbezopasnosti [Cibersecurity
questions], 2022, no. 1(47), pp. 18-25. https://doi.org/10.21681/2311-3456-2022-1-18-25

13. Shuaiting Q., Wenbao H., Yifa Li, Luyao J. Construction of extended multivariate public key
cryptosystems. International Journal of Network Security, 2016, vol. 18, no. 1, pp. 60—67.

14. Jintai D., Dieter S. Multivariable public key cryptosystems. 2004.
https://eprint.iacr.org/2004/350.pdf (accessed: February 24, 2022).

Received: December 22, 2021.
Accepted: May 05, 2022.

Authors’ information:
Nikolay A. Moldovyan — Dr. Sci. in Engineering, Professor, Chief Researcher; nmold@mail.ru

Alexandr A. Moldovyan — Dr. Sci. in Engineering, Professor, Chief Researcher; maal305Qyandex.ru

216 Bectuuk CII6I'Y. [Ipuknagunas maremaruka. Vudopmaruka... 2022. T. 18. Boim. 2



CTpyKTypa OJHOI YeThIpeXMepHOii ajredbpbl U reHepalus
nmapaMeTpoB CKPBITOI 33/1a49M JJUCKPETHOTO JIOrapu(pMUPOBaHUST

H. A. Moadosan, A. A. Moadossan

Cankr-IlerepOyprekuit eiepabHBIN UCCIEI0BATEIBLCKUN eHTp Poccuiickoil akageMun HayK,
Poccuiickas Penepanus, 199178, Cauxr-Ilerepbypr, B. O., 14-a aunus, 39

Jas murupoBauusi: Moldovyan N. A., Moldovyan A. A. Structure of a 4-dimensional algebra
and generating parameters of the hidden discrete logarithm problem // Becruuk Cankr-Ilerep-
Oyprckoro yuuBepcurera. llpukiannas maremaruka. VHdopmaruka. IIporecchl ynpasiieHwusi.

2022. T. 18. Bemr. 2. C. 209-217. https://doi.org/10.21638 /11701 /spbul0.2022.202

CrpoeHne oJTHOI YeTHIPEXMEPHON KOHEYHON HEKOMMYTATUBHON ACCOIMATUBHON aireOphl, 3a-
nmanHOi Hax nogem GF(p), M3y4IeHo B IJIaHE €€ UCTIONB30BAHMS B KAIECTBE aIre0panvIecKoro
HOCHUTEJIsI CKPBITOM 3aJa4M JIMCKPeTHOrO JjorapudmMupoBanus. [lokazaHo, 94To KaxKIblil 00-
paTUMBII BEKTOD, HE OTHOCSIIIUICS K CKaJsIPHBIM, BKJIIOUYAETCS B €IMHCTBEHHYIO KOMMYTa-
THUBHYIO TPYIITy, KOTOPAasi SABJISIETCS MOAMHOYKECTBOM AJIreOpandecKnux 3JIeMeHTOB. 1 pu Tumna
KOMMYTATUBHBIX TPYIIl COJEPXKATCs B ajrebpe, M BbIBEJEHbI (DOPMYJIbI JIJIsi BBIMHUCIJIEHUS
MOPsIZIKA U YUCJIa, TPYII KaxKI0ro Tuma. [lojiydeHHble pe3y/IbTaThl UCIOJb30BaHbI JJIsT Pa3-
PabOTKH AJITOPUTMOB T€HEPAIINY [TAPAMETPOB CXeM IUMPOBOil MOINCH, OCHOBAHHBIX HA BbI-
YUCIUTEIBLHOM TPYIHOCTH CKPBITON 3a[a4u JIOrapudMUPOBAHUSI.

Karoueswie crosa: nudpoBast MOIIICH, IOCTKBAHTOBAsI KPAIITOCXEMa, CKPBITAsI 3a/4ata JIora-
pudMUpOBaHUs, KOHEYHAS HEKOMMYTATHBHAsS ajredpa, acCoIMaTUBHAs ajaredpa, IUKJIImde-
CKag IpyHIa.
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