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The nonlinear time-delay systems are considered and the limiting behavior of their solutions
is investigated. The case in which the solutions have a trivial equilibrium that may not
be an invariant set of the system is studied. The junction of Lyapunov—Krasovskii and
Razumikhin approaches is applied to obtain sufficient conditions for the existence of an
asymptotic quiescent position in the large. In the case when a general system has a trivial
solution, new sufficient conditions for its asymptotic stability are obtained. Examples, that
illustrate the application of the obtained results, are given.
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1. Introduction. The second Lyapunov method is the main tool to analyze the
qualitative behavior of the solutions of differential equations. For the differential equa-
tions with delay, this method includes two approaches as follows. In accordance with
the Krasovskii approach [1, 2], Lyapunov— Krasovskii functionals are constructed as Lya-
punov functions for stability analysis. In accordance with the Razumikhin approach [3, 4]
the motion equations are studied using the classical Lyapunov function but its derivative
along the trajectories of the system is estimated not on the whole set of its integral curves
but on some subset. The junction of these approaches is also successfully used to analyze
the stability of time-delay systems. In [5–7], the idea was proposed to replace the posi-
tive definiteness of the functional with this condition on the special Razumikhin-type set
of functions only while retaining the other classical conditions. This made it possible to
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obtain sufficient conditions for the asymptotic stability of time-delay systems of general
form, as well as necessary and sufficient conditions for the asymptotic stability of linear
time-delay systems.

In this paper we investigate the issue of the existence of an asymptotic quiescent
position in nonlinear time-delay systems. The concept of an asymptotic quiescent position
for the systems of differential equations was introduced by Zubov in [8] for studying the
motions with a limiting behavior for infinitely increasing times in which the limit sets are
not the invariant sets of the initial differential equations. A number of papers are devoted
to this topic, see, for example, [9–11]. For time-delay systems, the concept of an asymptotic
quiescent position was introduced in [12], and in papers [13, 14] some sufficient condition
for it existence have been established. In this paper we present a modification of the
sufficient conditions for the existence of an asymptotic quiescent position. The main idea
is to add to the condition of positive definiteness of the functional one more condition,
which must be satisfied on the special Razumikhin-type set of functions. This made it
possible to weaken the restrictions on the derivative of the functional with respect to the
solutions of the system (in comparison with [12]), but at the same time strengthened the
restriction on the choice of the functional itself. In general terms, the difference between
the result obtained in [12] and the one presented here is most easily demonstrated by
systems with perturbations of the following type:

ẋ = F (t, xt) +R(t, xt),

where the system
ẋ = F (t, xt)

has an asymptotically stable trivial solution, and a functional R(t, xt) such that

∥R(t, xt)∥ ⩽ γ(t) −→ 0 as t −→ +∞.

In [12], the existence of an asymptotic quiescent position is guaranteed by the condition
of the convergence of the improper integral of the function γ(t). In the present paper,
this condition is not needed. However, on the functional V (t, xt), with the help of which
the system is investigated, an additional condition is imposed, the essence of which is as
follows: V must be an increasing function of the norm ∥x∥h.

2. Preliminaries. Consider the time-delay system

ẋ = f(t, x(t), x(t− h)), (1)

where x(t) ∈ Rn and the time-delay h > 0. Let the vector-valued function f(t, x, y) be
defined for t ⩾ 0, x ∈ Rn and y ∈ Rn. We assume that this function is continuous in
the variables and satisfies the Lipschitz condition with respect to the arguments x and y.
From now on we assume that initial functions belong to the space of continuous vector
functions C

(
[−h, 0], Rn

)
and denote X = C

(
[−h, 0], Rn

)
, R1

+ =
{
t ∈ R1

∣∣ t ⩾ 0
}
. It is well

known from [15], that the above restrictions on the right-hand side of system (1) ensure
the existence and uniqueness of a solution x(t, t0, φ) for any t0 ∈ R1

+ and φ ∈ X. For given
t0 ∈ R1

+ and φ ∈ X the state of the system at time t is defined as

xt(t0, φ) = x(t+ s, t0, φ), s ∈ [−h, 0].

From now on we use the Euclidian norm for vectors, and for functions φ ∈ X we use the
uniform norm:

∥φ∥h = sup
s∈[−h,0]

∥φ(s)∥.
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Definition 1. The position x = 0 is called a asymptotic quiescent position in the
large if all solutions of system (1) are defined on the set t ⩾ t0 and

∥x(t, t0, φ)∥ −→ 0 as t −→ +∞.

Let the function λ(t) be defined and continuous for each t ∈ R1
+.

Definition 2. A function W (t, x) is called negative definite on the set ∥x∥ ⩾ λ(t) if
the following conditions are satisfied:

a) W (t, x) is continuous in the variables on the set t ∈ R1
+, x ∈ Rn;

b) W (t, x) ⩽ −W1(x) on the ∥x∥ ⩾ λ(t), where a function W1(x) is continuous and
positive definite on the set x ∈ Rn.

Let a functional V (t, φ) be defined on the set X for each t ∈ R1
+. This functional will

be understood as a mapping V : R1
+ ×X → R1.

Definition 3. The functional V (t, φ) is said to be continuous on the set R1
+ ×X if

for any ε > 0, t ∈ R1
+ and φ ∈ X there exists a value δ > 0 such that, for any τ ∈ R1

+ and
ψ ∈ X with |t− τ |+ ∥φ− ψ∥h < δ, |V (t, φ)− V (τ, ψ)| < ε.

If we substitute a solution x(t, t0, φ) into the functional V we get a function v(t) =
V
(
t, xt(t0, φ)

)
.

Definition 4. The derivative of the functional V (t, xt) along the solution x(t, t0, φ)
is the functional W (t, xt) which satisfies the following condition:

v̇(t) ≡W
(
t, xt(t0, φ)

)
.

This identity should hold for all t ⩾ t0 for which the right-hand side is defined. Such
a functional W (t, xt), if it exists, will be denoted by V̇ |(1)(t, xt). And in this case the
functional V (t, xt) will be called differentiable along the solutions of the system (1).

3. Sufficient condition for the existence of asymptotic quiescent position
in the large. Let us suppose for each H > 0 the function f(t, x, y) is uniformly bounded
in t ⩾ 0 on the set ∥x∥ ⩽ H, ∥y∥ ⩽ H, and introduce the set

S =
{
φ ∈ X

∣∣ ∥φ(s)∥ < ∥φ(0)∥, s ∈ [−h, 0)
}
.

Theorem 1. Let V (t, xt) and W (t, xt) be continuous on the set R1
+ ×X functionals

satisfying the conditions:
• V1

(
∥x(t)∥

)
⩽ V (t, xt) ⩽ V2

(
∥xt∥h

)
, where the functions V1(r) and V2(r) are positive

definite on the set r ⩾ 0, and V1(r)→ +∞ as r → +∞;
• there exists δ > 0 such that v(t) > v(ξ) for all ξ ∈ [t− δ, t) and xt ∈ S;
• V̇ |(1)(t, xt) = W (t, xt) ⩽ W1(t, x), where the function W1(t, x) is negative definite

on the set ∥x∥ ⩾ λ(t);
• lim
t→+∞

sup
∥x∥<λ(t)

W1(t, x) ⩽ 0;

• λ(t) ∈ C0
(
[0,+∞)

)
, λ(t) > 0 and λ(t)→ 0 as t→ +∞,

then x = 0 is asymptotic quiescent position in the large for trajectories of system (1).
P r o o f. We consider an arbitrary t0 ⩾ 0 and an arbitrary initial function

φ(t) ∈ C0[t0 − h, t0]. By virtue of the conditions of the theorem, the functionals
V (t, xt) and W (t, xt) are defined and continuous on the set R1

+ × X, consequently, for
v(t) = V (t, xt(t0, φ)) the equality v̇(t) = w(t) = W (t, xt(t0, φ)) will be satisfied over the
entire interval of the existence of the solution t ∈

[
t0, T (t0, φ)

)
. Thus, for all a and b from
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[
t0, T (t0, φ)

)
we have

v(b) = v(a) +

b∫
a

w(t) dt. (2)

It’s clear that T (t0, φ) may be equal to +∞. For the sake of simplicity we denote x(t, t0, φ)
by x(t). □

1. Let us prove that x(t) is defined on the interval [t0,+∞). Assume the converse.
Let there exists a moment of time t∗ > t0 such that x(t) is defined for all t ∈ [t0, t∗) and
not defined for t = t∗. Then, on the one hand, either there exist a constant H0 > 0 and
a sequence τk → t∗−0 such that ∥x(τk)∥ ⩽ H0 for all k ⩾ 1, that contradicts the existence
and uniqueness theorem of the main initial problem, or

∥x(t)∥ −→ +∞ as t −→ t∗ − 0.

Then from the first condition of the theorem it follows that

v(t) −→ +∞ as t −→ t∗ − 0. (3)

On the other hand, from the fifth condition of the theorem it follows that there exists
t1 ⩾ t0 such that ∥x(t)∥ ⩾ λ(t) for all t ∈ [t1, t∗). Therefore, using the third condition of
the theorem, we have v(t) ⩽ v(t1) for all t ∈ [t1, t∗), that contradicts relation (3).

2. Let us prove that x(t) is bounded on the interval [t0,+∞). From the fifth condition
of the theorem it follows that there exists a constant L1 > 0 such that λ(t) ⩽ L1 for all
t ⩾ 0. Let L2 > 0 be a constant such that ∥φ∥h ⩽ L2, and L = max{L1, L2}. Assume that
x(t) is unbounded on the set t ⩾ t0, then there exists a moment of time T > t0 such that
∥x(T )∥ = 2L and ∥x(t)∥ < 2L for all t ∈ [t0, T ). This means that xT ∈ S, consequently,
v̇(T ) ⩾ 0. (It follows from second condition of Theorem 1.) But by virtue of third condition
of the theorem we have v̇(T ) < 0. This contradiction means that x(t) < 2L for all t ⩾ t0.

3. Let us prove that x(t) → 0 as t → +∞. Assume the converse. Let there exist
a value α > 0 and sequence tk → +∞ as k → +∞ such that

∥x(tk)∥ ⩾ α for all k ⩾ 1. (4)

Two situations are possible:
(A) there exists T1 ⩾ t0 such that ∥x(t)∥ ⩾ λ(t) for all t ⩾ T1;
(B) there exists sequence of intervals (τk, τ

k), τk → +∞ as k → +∞ such that
∥x(t)∥ < λ(t) for any t ∈ (τk, τ

k), and ∥x(t)∥ ⩾ λ(t) for any t ∈ [τk, τk+1].
Remark 1. The function λ(t) → 0 as t → +∞, consequently, for any α > 0 it is

possible to find a moment of time T2 ⩾ 0 such that λ(t) < α/2 for all t ⩾ T2. Let there
exist θ1 and θ2, T2 ⩽ θ1 < θ2, having the property that ∥x(θ1)∥ = α

2 , ∥x(θ2)∥ = α and
∥x(t)∥ ∈ [α2 , α] as t ∈ [θ1, θ2]. In this case for each t ∈ [θ1, θ2], x(t) belongs to the set
∥x∥ ⩾ λ(t) on which the function W1(t, x) is negative definite. Then there exist a positive
definite in Rn function W (x) such that W1(t, x) ⩽ −W (x) on the set ∥x∥ ⩾ λ(t).

For any β1 > 0 and β2 > 0, β1 < β2 we define a value

γ(β1, β2) = min
β1⩽∥x∥⩽β2

W (x), γ > 0.

Applying the relation (2) in the limits from θ1 to θ2 and third condition of the theorem,
we obtain

v(θ2)− v(θ1) ⩽
θ2∫
θ1

W1(τ, x(τ)) dτ ⩽ −
θ2∫
θ1

W (x(τ)) dτ ⩽ −γ(θ2 − θ1). (5)
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We denote mi = sup |fi(t, x, y)| on the set t ⩾ 0, ∥x∥ ⩽ 2L, ∥y∥ ⩽ 2L, M =√
m2

1 + . . .+m2
n and applying Lagrange’s theorem on the mean value, estimate the length

of [θ1, θ2]:

α

2
⩽ ∥x(θ2)− x(θ1)∥ =

√√√√ n∑
i=1

(xi(θ2)− xi(θ1))2 = (θ2 − θ1)

√√√√ n∑
i=1

f2i
(
ξi, x(ξi), x(ξi − h)

)
⩽

⩽ (θ2 − θ1)
√
m2

1 + . . .+m2
n =M(θ2 − θ1).

Here xi(τ) is i-th coordinate of the vector-function x(τ) and ξi ∈ [θ1, θ2], i = 1, . . . , n.
Thus,

θ2 − θ1 ⩾ α

2M
. (6)

Let us consider the situation (A). There are two cases of situation (A):
(A1) there exist α1 > 0 and T3 ⩾ T1 such that ∥x(t)∥ ∈ [α1, 2L] for all t ⩾ T3;
(A2) there exists sequence tk → +∞ as k → +∞ such that ∥x(tk)∥ → 0 as k → +∞.
In case (A1) there exists T ⩾ T3 such that λ(t) < α1 for t ⩾ T . So x(t) belongs to

the set ∥x∥ ⩾ λ(t) as t ⩾ T , then, by virtue of Remark 1, we have

v(t)− v(T ) ⩽
t∫

T

W1(τ, x(τ)) dτ ⩽ −
t∫

T

W (x(τ)) dτ ⩽ −γ(α1, 2L)(t− T ).

This inequality contradicts the non-negativity of the function v(t) for t > T + v(T )
γ .

In case (A2) there exist a value α > 0 and a sequence of segments [θk, θ
k], θ1 ⩾ T ,

θk → +∞ as k → +∞ such that ∥x(θk)∥ = α/2, ∥x(θk)∥ = α and ∥x(t)∥ ∈ [α2 , α] as
t ∈ [θk, θ

k]. Applying Remark 1, for each t ⩾ T2, we get

v(t) ⩽ v(θ1) +

t∫
θ1

W1(τ, x(τ)) dτ ⩽ v(θ1)− γ(α/2, α)
m(t)∑
k=1

(θk − θk), (7)

where m(t)→ +∞ as t→ +∞. By virtue of Remark 1 and estimate (6), for all k ⩾ 1 the
following inequality holds:

θk − θk ⩾ α

2M
,

consequently, the right-hand side of inequality (7) tends to −∞ as t→ +∞. This contra-
dicts the non-negativity of the function v(t). Thus, we have established that the situation
(A) is impossible.

Let us consider situation (B). First we define a value ε = αγ(α/2,α)
8M , where α, γ, M

are the values defined in Remark 1. Further, without loss of generality, we assume that
the points tk are the local maximum points of the function ∥x(t)∥ and note that there are
two cases of situation (B):

(B1) there exists a number k∗, tk∗ ⩾ T2 such that xtk∗ ∈ S;
(B2) for any number k such that tk ⩾ T2, there exists τ ∈ [tk − h, tk) such that

∥x(τ)∥ ⩾ ∥x(tk)∥. (8)
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In case (B1), on the one hand, from the second condition of the theorem it follows
that v̇(tk∗) ⩾ 0. On the other hand, ∥x(tk∗)∥ ⩾ λ(tk∗), consequently, v̇(tk∗) < 0. Thus,
case (B1) is impossible.

In case (B2) we note that ∥x(tk)∥ ∈ [α, 2L] and denote values

η1 = min
r∈[α,2L]

V1(r) and η2 = max
r∈[α,2L]

V2(r).

Then, by virtue of first condition of the theorem, v(tk) ∈ [η1, η2] and, consequently, there
exist a value η ∈ [η1, η2] and sequence v(tks)→ η as s→ +∞. Therefore, for the selected
number ε there exists natural number s∗ such that

η − ε < v(tks) < η + ε for all s ⩾ s∗. (9)

Let us note that on the set s ⩾ s∗ it is possible to find a segment [tks , tks+1 ] such that

[tks , tks+1 ]
⋂ +∞⋃

m=1

(τm, τ
m) ̸= Ø. (10)

Let [tks , tks+1 ] be the segment that satisfies condition (10), then there exists a natural
number ls ⩾ 1 such that this segment can be represented as follows:

[tks , tks+1 ] =

ls−1⋃
i=0

[tks+i, tks+i+1], tks+ls = tks+1 .

Let us consider a segment [tks+i, tks+i+1] and note that either ∥x(t)∥ ⩾ λ(t) for t ∈
[tks+i, tks+i+1], then

v(tks+i+1)− v(tks+i) < 0, (11)

or there exist intervals (τ̃m, τ̃
m) ∈ [tks+i, tks+i+1], m = 1, . . . , pi, such that ∥x(t)∥ < λ(t)

for t ∈ (τ̃m, τ̃
m). From the fourth condition of the theorem it follows that there exists

a continuous and non-negative as t ∈ R1
+ function Λ(t) satisfying the following conditions:

(C1) Λ(t) ⩾ sup
∥x∥<λ(t)

W1(t, x);

(C2) Λ(t)→ 0 as t→ +∞.
From (C2) we have that there exist a moment of time T4 ⩾ T2 such that

a+h∫
a

Λ(t) dt < 4ε for all a ⩾ T4. (12)

From (4) and (8) it follows that there exist quantities δ1 ⩾ 0 and δ2 ⩾ 0 such that
(D1) ∥x(tks+i + δ1)∥ = α and ∥x(tks+i+1 − δ2)∥ = α;
(D2) ∥x(t)∥ < α as t ∈ [tks+i + δ1, t

ks+i+1 − δ2];
(D3) 0 < tks+i+1 − δ2 − tks+i + δ1 < h.
From (D1) and (D2) it follows that there exists ζ1 ∈ [tks+i + δ1, τ̃1] and ζ2 ∈

[τ̃pi , tks+i+1 − δ2] such that ∥x(ζ1)∥ = α/2, ∥x(t)∥ ∈ [α/2, α] as t ∈ [tks+i + δ1, ζ1]
and ∥x(ζ2)∥ = α/2, ∥x(t)∥ ∈ [α/2, α] as t ∈ [ζ2, t

ks+i+1 − δ2]; and from (D3) we have∑pi
m=1(τ̃

m − τ̃m) < h. Applying relation (2) in the limits from tks+i to tks+i+1, for each
i ∈ [0, ls − 1] we get:
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v(tks+i+1)− v(tks+i) ⩽
tks+i+δ1∫
tks+i

w1(t) dt+

ζ1∫
tks+i+δ1

w1(t) dt+

ζ2∫
ζ1

w1(t) dt+

+

tks+i+1−δ2∫
ζ2

w1(t) dt+

tks+i+1∫
tks+i+1−δ2

w1(t) dt = I1 + I2 + I3 + I4 + I5,

here w1(t) = W1(t, x(t)). Let us estimate each term of this sum on the set s ⩾ s∗ and
tks ⩾ T4:
• I1 ⩽ 0 and I5 ⩽ 0 by virtue of the third condition of the theorem;
• I2 ⩽ −γ(α/2,α)α2M and I4 ⩽ −γ(α/2,α)α2M by virtue of inequalities (5) and (6) of Re-

mark 1;
• to estimate I3, we represent the segment [ζ1, ζ2] in the following form [ζ1, ζ2] =

Ω1

⋃
Ω2, where Ω1 =

{
t ∈ [ζ1, ζ2]

∣∣ ∥x(t)∥ ⩾ λ(t)
}
, and Ω2 =

{
t ∈ [ζ1, ζ2]

∣∣ ∥x(t)∥ < λ(t)
}
.

Then, using relation (12), inequality (C1) and the third condition of the theorem, we get

I3 =

∫
Ω1

w1(t) dt+

∫
Ω2

w1(t) dt ⩽
∫
Ω2

w1(t) dt ⩽
∫
Ω1

Λ(t) dt < 4ε.

Consequently, for each i ∈ [0, ls − 1], for each s ⩾ s∗ and for each tks ⩾ T4 the
inequality holds

v(tks+i+1)− v(tks+i) < −4ε. (13)

Thus, using relation (2) in the limits from tks to tks+1 and also (9)–(11), (13), we
obtain the following contradiction:

−2ε < v(tks+1)− v(tks) =
ls−1∑
i=0

tks+i+1∫
tks+i

w1(t) dt < −4lsε ⩽ −4ε.

So the situation (B) is impossible and x(t) −→ 0 as t→ +∞. The theorem is proved.
4. Sufficient condition of asymptotic stability. Further we abandon the condition

uniformly boundedness of the vector-function f(t, x, y) with respect to t ⩾ 0 on the set
∥x∥ ⩽ H, ∥y∥ ⩽ H, and assume that system (1) has a trivial solution.

Theorem 2. Let V (t, xt) and W (t, xt) be continuous on the set R1
+ ×X functionals

satisfying the conditions:
• V1

(
∥x(t)∥

)
⩽ V (t, xt) ⩽ V2

(
∥xt∥h

)
, where the functions V1(r) and V2(r) are positive

definite on the set r ⩾ 0, and 0 ⩽ r ⩽ H;
• there exists δ > 0 such that v(t) > v(ξ) for all ξ ∈ [t− δ, t) and xt ∈ S;
• V̇ |(1)(t, xt) = W (t, xt) ⩽ W1(t, x), where the function W1(t, x) is negative definite

on the set λ(t) ⩽ ∥x∥ ⩽ H;
• lim
t→+∞

sup
∥x∥<λ(t)

W1(t, x) ⩽ 0;

• λ(t) ∈ C0
(
[0,+∞)

)
, λ(t) > 0 and λ(t)→ 0 as t→ +∞,

then the trivial solution of the system (1) is asymptotically stable.
P r o o f. Let us show that the trivial solution of system (1) is Lyapunov stable, i. e.

for every ε > 0 and t0 ⩾ 0 there exists δ = δ(ε, t0) > 0 such that for any initial functions
φ ∈ X, ∥φ∥h < δ, we have

∥∥x(t, t0, φ)∥∥ < ε for all t ⩾ t0. □
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Let us set an arbitrary number ε > 0. From firth condition of Theorem 2 it follows
that there exists a moment T ⩾ t0 such that λ(t) < ε/2 as t ⩾ T . Since x(t, t0, φ) depends
continuously on φ (see, for example [15]), by the values ε and T we can find a number
δ ∈ (0, ε) such that if ∥φ∥h < δ, then

∥∥x(t, t0, φ)∥∥ < ε/2 for all t ∈ [t0, T ].
Suppose, that there exists t∗ > T such that

∥∥x(t∗, t0, φ)∥∥ = ε. And let t∗ be the first
moment when the solution x(t, t0, φ) reaches the sphere ∥x∥ = ε.

Then on one side xt∗ ∈ S and v̇(t∗) ⩾ 0; and on the other side v̇(t∗) < 0 by virtue of
third condition of Theorem 2. This contradiction proofs the Lyapunov stability of trivial
solution of system (1).

The proof of the asymptotic stability of the trivial solution will repeat the proof of
the third item of Theorem 1, with the only difference that estimate (6) can be obtained
using the fact that system (1) has a trivial solution and the right-hand side of system (1)
satisfies the Lipschitz condition. The theorem is proved.

Remark 2. Note that the verification of the second condition of the above theorems
in the general case seems to be very difficult. However, it can be easily verified for a wide
class of functionals.

Examples. In this part, the application of the above theorems is illustrated by the
examples of scalar nonlinear differential-difference equation.

Let us consider the equation

ẋ = −2x3(t) + x3(t− h) + 1
3
√
1 + t

(14)

and the functional

V = x4(t) +

t∫
t−h

x6(s) ds. (15)

This functional is continuous in the sense of Definition 3 and satisfies the first condition of
Theorem 1, where V1

(
∥x∥
)
= ∥x∥4 and V2

(
∥x∥h

)
= ∥x∥4h + h∥x∥6h. The second condition

of Theorem 1 is satisfies too, since if xt ∈ S, then x4(t) > x4(ξ) as ξ ∈ [t − h, t) and,

consequently, the function γ(t) =
t∫

t−h
x6(s) ds satisfies the condition γ̇(t) > 0. Thus,

a value δ from second condition of Theorem 1 there exists. The functional W (t, xt) =

−7x6(t)+4x3(t)x3(t−h)+ 4x3(t)
3
√
1+t
−x6(t−h) is also continuous in the sense of Definition 3.

Along an arbitrary solution x(t) = x(t, t0, φ) of equation (14) the function v̇(t) that can
be found using the basic rules of differentiation, coincides with W

(
t, xt(t0, φ)

)
. Then, by

virtue of Definition 4, we have

V̇ |(14)(t, xt) =W (t, xt),

where

W (t, xt) = −7x6(t) + 4x3(t)x3(t− h) + 4x3(t)
3
√
1 + t

− x6(t− h) =

= −3x6(t)−
(
2x3(t)− x3(t− h)

)2
+

4x3(t)
3
√
1 + t

⩽ −3x6(t) + 4|x(t)|3
3
√
1 + t

=W1(t, x(t)).

If we put

W1(t, x) = −3x6 +
4|x|3
3
√
1 + t

and λ(t) =
2

9
√
1 + t

,
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then we get

W1(t, x) ⩽ −
5

2
x6 on the set |x| ⩾ 2

9
√
1 + t

.

Thus, the function W1(t, x) is negative definite on the set |x| ⩾ λ(t):

sup
|x|<λ(t)

W1(t, x) ⩽
32

( 3
√
1 + t)2

−→ 0 as t→ +∞,

consequently, the forth condition of Theorem 1 is satisfies too. Therefore, all hypotheses
of Theorem 1 are true, and the position x = 0 is a asymptotic quiescent position in the
large for equation (14). Let us note that

+∞∫
0

sup
∥x∥<λ(τ)

W1(τ, x) dτ =

+∞∫
0

32

( 3
√
1 + τ)2

dτ = +∞,

so we cannot apply Theorem 1 from [12], at least if we use the same functional V and the
same function λ(t).

Let us consider the equation

ẋ = −2x3(t)et + x3(t− h) + x(t)
3
√
1 + t

(16)

and the functional (15). Repeating the reasoning from the previous example, we get

V̇ |(16)(t, xt) = −7etx6(t) + 4x3(t)x3(t− h) + 4x4(t)
3
√
1 + t

− x6(t− h) ⩽

⩽ −3x6(t)−
(
2x3(t)− x3(t− h)

)2
+

4x4(t)
3
√
1 + t

⩽ −3x6(t) + 4x4(t)
3
√
1 + t

=W1(t, x(t)).

If we put

W1(t, x) = −3x6 +
4x4

3
√
1 + t

and λ(t) =
2

6
√
1 + t

,

then we get

W1(t, x) ⩽ −2x6 on the set |x| ⩾ 2
6
√
1 + t

.

Thus, the function W1(t, x) is negative definite on the set |x| ⩾ λ(t):

sup
|x|<λ(t)

W1(t, x) ⩽
64

1 + t
−→ 0 as t→ +∞,

consequently, all conditions of Theorem 2 are satisfies and therefore, the trivial solution
of equation (16) is asymptotically stable.

5. Conclusion. This paper contains the further research of the problem of the exis-
tence of asymptotic equilibrium in time-delay systems, which was started in [12].The syn-
thesis of Lyapunov — Krasovsky and Razumikhin approaches made it possible to weaken
the restrictions on the functional W (t, xt), in comparison with [12]. Thus, it turned out
to be possible to solve the question of the existence of asymptotic equilibrium for a wider
class of systems.
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Для цитирования: Kuptsova S. E., Kuptsov S. Yu. Research of the asymptotic equilibrium of
time-delay systems by junction of Lyapunov—Krasovskii and Razumikhin approaches // Вест-
ник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы
управления. 2022. Т. 18. Вып. 2. С. 198–208. https://doi.org/10.21638/11701/spbu10.2022.201

В статье изучаются нелинейные системы с запаздывающим аргументом и исследует-
ся предельное поведение их решений. Рассмотрен случай, когда решения стремятся
к нулевому предельному положению, которое, в свою очередь, может не быть инва-
риантным множеством системы. На стыке подходов Ляпунова —Красовского и Разу-
михина получены достаточные условия существования асимптотического положения
покоя в целом. В случае, когда система имеет тривиальное решение, определены новые
достаточные условия его асимптотической устойчивости. Приведены примеры, иллю-
стрирующие применение приведенных результатов.
Ключевые слова: системы с запаздыванием, асимптотическая устойчивость, асимпто-
тическое положение покоя, метод функционалов Ляпунова—Красовского, подход Ра-
зумихина.
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