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The total number of those infected at the end of an epidemic and the maximum number
of infected during an epidemic are considered as two quality criteria for control by delayed
isolation of the SIR- and SIRS-type infections. The temporal Barabasi—Albert graph is used
to model the contacts between individuals. Simulations are run to estimate optimal delays.
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1. Introduction. How can we control the epidemics of type Susceptible → Infected →
Recovered (SIR) or Susceptible → Infected → Recovered → Susceptible (SIRS)?

In March 2020, many nations around the world reacted to the spread of COVID-19
through policies of social isolation to help to stop the pandemic and minimize the damage.
Isolation typically involves voluntary and non-voluntary restrictions on social interactions.
Simply speaking, in-person contacts are limited to the closest circles. Notice that in papers
published before 2020, “isolation” usually applied only to the infected individuals. These
measures have obvious economic repercussions. So, isolation has its own price. This eco-
nomic criterion will certainly be studied extensively in the future. In this work, however,
we analyze the effect of the isolation on the spread of the disease.

There have already been some examples of this kind of study.
Brownian Motion. One good animation of the Brownian motion approach can be

found in [1] and the theoretical support can found in [2].
Differential Equations. The classic differential equations approach is explained well in

[3]. The problem of epidemic control using “prevention” (similar to the notion “isolation”
in this paper) in percolation model with SIR differential equations considered in [4–7].

The model SIR on differential equations is very popular and as a result many re-
searchers associate the name SIR with it. Nevertheless, here by SIR and SIRS we under-
stand no more than just the concept of transitioning between the states S, I, R.

Both Brownian motion and differential equations are ongoing directions in research.
However, they don’t fit well to simulate the isolation of all population. So, we will focus
on other models.

Contact Networks. We apply the network (graph) approach. The agent-based ap-
proach for SIS (Susceptible → Infected → Susceptible) and SIR diseases was developed
in [8, 9].
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So far we don’t see papers considering isolation of all population as method to control the
epidemic on a network. However, there are some good works on a problem of epidemic
control with isolation of infected people. In [10], authors consider SIS on Erdos — Reni
and Barabasi — Albert graphs. Isolation of infected on multilayer network with SIR is
considered in [11]. SIS model (no immunity after illness) and multilayer network aren’t
applicable to COVID-19 and influenza.

We consider SIR and SIRS process on a temporal graph. This graph is built according
to Barabasi — Albert preferential attachment mechanism [12], which is known to be one
of the best to reflect social connections. Then we modify it by making the edges temporal,
meaning they available only at a specific times. The theory of temporal graphs can be found
in [13]. Then we run this SIR simulation with 2, 3 and 4 week restriction on communication
with “popular” nodes (ones with the degree equal or greater than 5), starting with different
delays from the beginning of the epidemic process. The result is presented as plots of the
difference of infected and recovered. The Section 5, repeats the experiment for SIRS model.
The Python computer code can be found in an open access at [14].

Disclaimer. Of course, our work is inspired by unprecedented event of COVID-19 out-
break. However, this paper should not be seen as a direct recommendation to control this
epidemic or any other specific epidemic. We make a lot of assumptions about parameters.
We try to make it close to the reality, but the data has been changing every week. Instead,
we suggest seeing our work as one small step into the direction of using agent-based model
on temporal networks for the mentioned above problem.

2. Epidemic model and parameters. We introduce the epidemic model, which
consists of three parts: population model, epidemic process and isolation. Also, we explain
the choice of parameters.

2.1. Population model. A population is presented as a graph, where nodes are
the individuals and edges correspond to the contacts between them of such a type that
a considered disease can be transferred. Barabasi— Albert structure of this graph is one
of the assumptions of this paper. In order to keep the narrative simple, we don’t consider
other types of graphs here. However, our code in [14] can be easily changed to Erdos —
Reni or any other known type of graphs, and everyone is welcome to do it.

Fig. 1. Histogram of the distribution of node degrees in Barabasi graph, n = 100, m = 3

Barabasi— Albert graph of size n is built by a consecutive augmenting process [12].
After initiation of the graph G with m0 nodes and no edges, one connects a new node
x to G with m ⩽ m0 edges in such a way that the probability that x is connected to
a ∈ G is equal to the degree of a. So, “popular” nodes grow faster (Fig. 1). In this work
m = m0 = 3.
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The building process stops when the size ofG reaches n. We transformG to a temporal
graph by assigning the times of availability to the edges (see an example in Figures 2 and 3).
Edges connect the nodes only in the assigned days of availability.

Fig. 2. Example of a temporal graph

Fig. 3. Corresponding time sequence of static graphs for the

For instance, nodes s and a are connected by the edge (s, a) at the time 1, the nodes
b and f are connected by the edge (b, f) at times 2 and 4. We assume time to be discrete,
measured in days by natural numbers.

If two nodes x, y ∈ G are connected by an edge with the assigned day of availability t,
we say x and y are temporal neighbors at t. The number of temporal neighbors of a node
x ∈ G at t is called temporal degree of x at t. In Subsection 2.3 (Isolation) we will describe
how we assign availability moments to the edges of the graph.

2.2. Epidemic process. When the Barabasi— Albert graph of n nodes is built we
can simulate an epidemic with the SIR process (Fig. 4). If an infectious node at a day
t has an available edge to a susceptible node a, then a gets infected with probability p.
After 13 days a becomes recovered.

Fig. 4. Transition between the states of a node in SIR process

All recovered assumed to be immune to secondary infection during the considered
epidemic. Each node in G has a status: “susceptible”, “infected” or “recovered”. Nodes are
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infectious if and only if they have the status “infected”. It may be asked why we don’t
have a status “dead”. Despite how cruel it sounds, for the spread of the disease, dead and
recovered play the same role because they can’t get infected no more. After G is initiated
with i infected nodes at the day zero (Figures 5, 6), every day each infectious node infects
with denoted by p probability each of its temporal neighbors with the status “susceptible”,
meaning changing the temporal neighbor’s status to “infected”. The duration of status
“infected” is 13 days, i. e. average duration of the infectious conditions [15, 16] after which
the node becomes “recovered” (Figures 7, 8). What should the value of parameter p be?
The triple product of an average temporal degree, duration of “infected” status and p
should be equal to the reproductive number of the infection, i. e. how many new people
on average get infected from one infectious. The reproductive number of COVID-19 is
an open question. Different statistical methods give quite different results [17]. Here we
assume that COVID-19 has reproductive number 3.6. The average temporal degree of
5000-node Barabasi-Graph is about 5.99. So, we set p = 0.046 ≈ 3.6/(5.99 · 13). Again,
these parameters should not be seen as a statement. They are just assumptions. Our goal
is to present the approach rather than an actual solution. Everyone is welcome to change
p and other parameters in the code at [14].

Fig. 5. Barabasi 15-node graph
with 3 infected nodes

Fig. 6. Barabasi 100-node graph
with 6 initially infected

Fig. 7. Infected 15-node graph
after 15 days (blue nodes

represent recovered or dead)

Fig. 8. Barabasi 100-node graph
after 15 days (blue nodes

represent recovered or dead)

Since the random number generator is involved, the infection process may go diffe-
rently even on the same graph and same initially infected nodes. We will address this issue
in Section 3.
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2.3. Isolation. One inconvenience of classic epidemic models based on differential
equations or Brownian motion is that it is hard to conduct experiments with isolation.
Temporal graphs allow us to do it relatively easy. First, for simplicity, we give one avail-
ability time moment per day to each edge of G during [t1, tT ], meaning that an individual
maintains each of their contact daily. (In the future works, someone can try to model more
complex distributions of schedules on the graph, for example, make some edges available
on weekdays and others only on the weekends.) Then we enforce “No gathering 5 or more
people” rule from day ts to day tf as following: every node x ∈ G in the time interval
[ts, tf ] ⊂ [t1, tT ] disconnects from its neighbor which has temporal degree 5 or more. Since
we do it in an iterative manner for all nodes in G on each time step, at some point “popu-
lar” nodes stop being “popular” and keep just few connections. The time of the beginning
of isolation ts we call isolation delay. Why do we choose “No gathering 5 or more people”?
State of Kansas, USA, issued “Stay at Home” order [18] prohibiting mass gathering more
than 10 people. However, since all the places people could gather were closed, in fact, no
gatherings were happening at all. So, we assume that average number of contacts per day
was less than 5 for one person.

Someone could say that isolating “popular” nodes isn’t the same that “no gathering”.
Well, we think it is equivalent because gathering in a group of k people at day t means
that the temporal degree of each person in this group greater or equal k. You may see
a university lecture as a gathering of k students or you may say that their professor has
a temporal degree k or higher. If students don’t come in their lecture because of the “no
gathering”, they lower their temporal degree and the temporal degree of the professor.

3. Quality criteria. Epidemics bring complex damage to society. Individuals going
through the illness work less and, in severe cases, may die. So, it makes sense to consider
measures against the infection and study the effectiveness of them.

Let Ω be the space of events, causing randomness of epidemic processes.
Let φ(t, ts, l, ω), further referred as hectic function, be the number of currently infected

at a day t of the epidemic with the delay of isolation ts, the length of isolation l and random
event ω ∈ Ω.

As we mentioned before, the infection processes we run have random nature. Thus,
to be able to make conclusions, we shall talk about expectation and variation. So, we will
repeat each experiment multiple times and compute the average and standard deviation.
The value E[φ(t, ts, l, ω)] will be estimated as f(t, ts, l), the average hectic function in the
finite number of experiments.

Let F l
tot(ts) be the total number of people getting sick during the epidemic, i. e.

F l
tot(ts) =

∑tend
t=1 f(t, ts, l)/ds. Here tend is the last day of the epidemic and ds is duration

of the infectious status. In all numerical experiments of this paper we adopt ds = 13.
We choose minimality of F l

tot(ts) to be the first quality criterion of the actions against
the epidemic.

Now let’s think about lethal cases. Their number depends on the total number of
infected but also depends on the available spots in hospitals. If too many ill people in severe
conditions simultaneously come for medical service, there may not be enough resources to
help them. Thus, another approach would be to minimize the maximum number of infected
during the epidemic period (so-called “flattening”). So, the second quality criterion to be
minimized is F l

max(ts) = maxt f(t, ts, l).
We consider isolation as a single tool to reduce both F l

tot(ts) and F l
max(ts). The

isolation has two parameters to control: its duration l and the starting time of it ts. The
cost of isolation does depend on l. This dependency is not studied in this work, where we
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make experiments with a few fixed values of l. So, we place l to the upper indices of both
quality criteria and when it is fixed we name them objective functions.

In the majority of cases, the cost of isolation does not depend on ts. This allows
to perform optimization of F l

tot and F l
max over ts ignoring the cost of the isolation for a

fixed l.
Problem 1. Minimize the objective function

F l
tot(ts) =

tend∑
t=1

f(t, ts, l)/ds =

tend∑
t=1

E[φ(t, ts, l, ω)]/ds.

Problem 2. Minimize the objective function

F l
max(ts) = max

t
f(t, ts, l) = max

t
E[φ(t, ts, l, ω)].

The experiments conducted in the Section 4 are meant to address the two problems
above but, of course, may give some other food for thought.

4. Experiments and observations. We conducted experiments on 5000-node tem-
poral Barabasi — Albert graph with no isolation and with the isolation of lengths l = 14, 21
and 42 days with delays 7, 8, ..., 14 days. However, for simplicity of narrative, here we pro-
vide plots only for experiments with the delays t = 7, 14 and t∗s. The later is the one which
gives a minimal value for F l

max.
Each simulation is, in fact, a random process and so, we run it multiple times with

non-fixed random seed. We average 30 repetitions of each simulation with corresponding l
and ts. This supplies us with estimates f̃ of hectic function f . Thus, we obtain estimates
F̃ l
tot(ts) and F̃ l

max(ts) of objective functions F l
tot(ts) and F l

max(ts).
Estimates F̃ l

tot(ts) for l = 14, 21, 42 (2, 3, 6 weeks) and delays ts = 7, 8, ..., 15,∞,
where ∞ means “No isolation”, are shown in Table 1. Table 2 contains estimates F̃ l

max(ts).
In Tables 1 and 2 the isolation duration ℓ is in weeks, its delay ts is in days.

Тable 1. Estimated expectations of total numbers of infected F̃ l
tot

PPPPPPℓ
Delay 7 8 9 10 11 12 13 14 15 ∞

2 4299 4259 4189 4131 4061 4033 3991 3972 3987 4453
3 4278 4189 4121 4019 3952 3879 3839 3831 3856 4453
6 4110 4011 3823 3653 3522 3425 3427 3518 3644 4453

Тable 2. Estimated expectations of maximum numbers of infected F̃ l
max

PPPPPPℓ
Delay 7 8 9 10 11 12 13 14 15 ∞

2 2428 2227 1933 1645 1540 1714 2025 2215 2431 3217
3 2286 1895 1632 1259 1481 1785 1996 2219 2442 3217
6 1605 1264 982 1270 1492 1749 2006 2212 2399 3217

Observe that the minimum of F̃ l
tot(ts) have been obtained on a 14th day delay for 2-,

3-isolation and on 12th day delay for 6-week isolation. The minimum of F̃ l
max(ts) has been

obtained with delay equal 11, 10 and 9 for 2-, 3- and 6-week isolation, respectively.
On Figures 9 and 10 one can see the graphics of F̃ 14

tot(ts) and F̃ 14
max(ts) for ts running

from 1 to 20.
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Fig. 9. Values of F̃ 14
tot for isolation

delays from 1 to 20
Fig. 10. Values of F̃ 14

max for isolation
delays from 1 to 20

Consideration of f , the expected hectic function, as a function of time with parameters
l и ts in the experiments brings us to the following observation. With big values of ts, the
function f has a single local maximum (“first wave”). With sufficiently small ts, the second
local maximum (“second wave”) appears in a later time of epidemic. With the further
decrease of ts, the magnitude of the second wave is growing monotonically, meanwhile, the
magnitude of the first wave is getting smaller monotonically as well (Figures 11 and 12).
At some point (ts < 12 for l = 14, ts < 11 for l = 21,...), the first wave exceeds the second
one.

Fig. 11. Estimated hectic function on 2-week isolation
with its standard deviation on the top narrow plot

One obvious conclusion from that: When the time is discretized by 1-day step, there
exists a pair of delays (t̂s, t̂s+1), such that, for t̂s, the second wave is greater than the first
wave, and otherwise for t̂s + 1. We have found such pairs for different l experimentally.
As anticipated it appears that the maximum magnitude of both waves is minimum for
one of those delays from the pair than for any other possible delay. For the convenience of
comparison, the graphs of simulations for the same length of isolation are combined in one
plot. Thus, we obtained three plots in Figures 11 and 12 for l = 14, 21, 42, respectively.

On 10 000-node graph, the results are similar. For 6-week isolation, one may see the
values of the objective functions in Table 3 and the estimated hectic function with its
standard deviation on the Fig. 13.
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Fig. 12. Top pair a: estimated hectic function for 3-week isolation with its std. div. and
Bottom pair b: estimated hectic function on 6-week isolation with its std. div.

Тable 3. Objective functions F 42
tot and F 42

max on 10K-node graph, delay in days

PPPPPPF
Delay 7 8 9 10 11 12 13 14 15 ∞

F 42
tot 8306 8187 7869 7488 7211 6979 6871 6958 7208 8908

F 42
max 3490 3019 2126 2197 2659 3244 3698 4229 4645 6426

Fig. 13. 10K-nodes, estimated hectic function for 6-week isolation and std. div.

In 10K-population just like in the 5K-population case, 6-week isolation brings in big
sensitivity of the objective function F 42

max for the isolation delay approaching the optimal
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point (9 days). Its values increases by 42% (29% for 5K-population) with the delay de-
crease by just one day. The decrease of the delay by two days causes the 64 % (63 % for
5K-population) increase of F 42

max.
If one doesn’t notice the scale on y-axis of Fig. 12, b and Fig. 13, they may think that

these are the same pictures. Indeed, they are very similar. That shows that the results are
well-scalable on 10K-population and, perhaps, on even bigger populations. Unfortunately,
limited computer power did not let us to experiment with more than 10K-nodes.

5. SIRS. Several cases of people being infected second time several months after
they recovered from COVID-19 were widely announced in the news. However, up to this
moment, there is no study of the length of the obtained immunity for COVID-19. Here we
suggest to look how the described above isolation experiments would look if we assume
exponential decay of the immunity: I = 2−t/C , where t is the number of days since
recovery and C, the half-life period, is the parameter as said before we don’t really know
yet. Then each recovered node contacting an infectious node in the graph will be infected
with probability (1− I)p instead of being forever protected like it was in SIR model. We
set C to be 365 (a year) and 548 = 365+183 (a year and half). That means the immunity
is 2−1 = 0.5 in a year or a year and a half, respectively.

With the described above modification, we have obtained the results, which are shown
on Figures 14–19.

Fig. 14. 5K-nodes, estimated hectic function on 2-week isolation, half-life period C = 365

The first conclusion from conducted numerical experiments about the epidemic with
the infection, which does not cause stable 100% immunity for recovered is quite expected.
If we compare the beginning dynamics of the epidemics with 100% immunity and without,
we will see that they coincide totally until the appearance of the first recovered. And then,
with a big enough half-life period C, the dynamics are very similar to each other until the
end of the last wave (if second wave doesn’t exist, the first one is the last).

Thus, the beginnings of graphics in Fig. 19, in fact, are the quadruple horizontally
compressed graphics in Figures 12 and 13. Similar observation can be done about graphics
of mean values of hectic functions in Figures 11 and 14, 15. The same compression trans-
forms the graphics with the delays 7, 14 days and “No isolation” in the Fig. 12 (top) to
the beginnings of the graphics with the same delays in Figures 16 and 17.

Boundedness by time of immunity gives infection a chance for a long life in a po-
pulation. For the convenience of the following narrative, we need to split the presence of
infection in population into 3 time intervals: a) epidemic, rapid growth and decrease of
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Fig. 15. 5K-nodes, estimated hectic function on 2-week isolation, half-life period C = 548

Fig. 16. 5K-nodes, estimated hectic function on 3-week isolation, half-life period C = 365

Fig. 17. 5K-nodes, estimated hectic function on 3-week isolation, half-life period C = 548

infected (waves); b) depression phase, the time interval with very low number of infected,
follows epidemic and has about the same length; c) steady state, time interval with small
waves, follows depression. Obviously, these intervals don’t have strict borders. Sick indi-
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Fig. 18. 5K-nodes, estimated hectic function on 6-week isolation, half-life period C = 365

Fig. 19. 5K-nodes, estimated hectic function on 6-week isolation, half-life period C = 548

viduals in epidemic are first-time-infected mostly. Most of the infected of depression phase
and steady state are second-timers.

We observe that the greater the magnitude of the last epidemic wave, the higher the
probability that infection disappears in depression phase.

Let’s demonstrate the behavior of hectic function in depression phase and steady state
on the example of “No isolation” experiment on 5 000-population with half-life period
C = 365.

So, we run 30 random processes. In all of them, we observe a single wave with almost
the same magnitude, which exceeds the magnitudes of the waves in the experiments with
isolation. However, in the depression phase and steady state, the numbers of infected are
much lower with no isolation than with any significant (affecting the epidemic) isolation.
The end of epidemic lands approximately on 60th day. At 101st day, the infection disappears
in 20 processes (2/3). In the processes with the still present infection, the numbers of
infected are 47, 24, 20, 16, 3, 3, 3, 2, 1, 1. Later last 7 processes nulled quickly: on
109th day — 10th process, on 114th day — 5th, one 115th day — 6th, on 119th day — 8th, on
121st day — 7th, on 129th day — 9th, on 142nd day — 4th. The remaining three processes
stay alive till 400th day demonstrating chaotic oscillations with magnitude from 2 to 7 %
approximately.
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In the experiments with 2-week isolation delayed by 7 days, with half-life C = 365
the number of nulled processes at 101st day had been significantly smaller (5 from 30).
Later, in depression phase lasting 106 days, this number has grown up to 23. At steady
state beginning at 207th day and observed till 1095th day, oscillations of hectic function
lay between 2 and 8%.

It appears that if we assume the half-life period to be greater than a year then there
is a chance that the infection continues to oppress the population.

Then with some oscillations, the estimated hectic function of survived infections has
its values around 5–8% from the population in steady phase. If we assume that C is greater
than a year and a half, then, in any case, there is a day when the infection disappear from
the population. Note that the last observation was obtained on relatively small populations
(5000–10 000). It may not be true for larger populations.

6. Conclusion and recommendations. The experiments we conducted for SIR
show that the objectives to decrease total number of infected and to decrease maximum
number of infected (Problems 1 and 2 stated in Section 3) are not antagonistic to each
other. Firstly, the values of both criteria improve when the delay increases starting from
zero. Secondly, they get worse when the delay becomes significantly large. Thirdly, a good
compromise can be found because the optimal values are achieved at closely spaced delays.
For the isolation with length from 2 to 4 weeks, that compromise is the delay between
7 and 14 days.

The experiments with SIRS show that short half-life period of immunity leads to
possible existence of infection in the endemic state for a long time. Then the changes of
the number of infected have a wavy behavior with magnitude significantly less (around
5–8% from the population) than in the epidemic (from 20 to 70% depending on the
isolation measures).

In some realizations of the random epidemic process with long enough half-life period
C (1.5 year and more), the infection disappears after the epidemic. The share of such
realizations and their magnitudes depend on C and the isolation measures. It appears
that the chance that the infection leaves the population is higher when the last epidemic
wave has greater magnitude.

Alas, to compute the recommendation when to start an isolation at a certain day of
epidemic, besides the optimal delay topt, we need to know the day of the beginning of
epidemic, which is usually unknown. Fortunately, we know n, the size of population. Also,
I, the amount of infected at the current day ttoday can be estimated. Thus, we can run
“No isolation” simulation on n-node graph to the day t1, when the number of infected in
the simulation is equal to I. Then ttoday − t1 + topt is the time to start the isolation.
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Общее количество инфицированных до конца эпидемии и максимальное их число рас-
сматриваются как два критерия качества для контроля эпидемиями типов SIR и SIRS
посредством задержки введения изоляции. Временной граф Барабаси — Альберта ис-
пользуется для моделирования контактов между индивидуумами. Проведены числен-
ные эксперименты для оценки оптимальных, согласно данным критериям, задержек.
Ключевые слова: задержка введения изоляции, SIR, SIRS, управление эпидемией, вре-
менной граф Барабаси — Альберта, общее число инфицированных, максимальное число
инфицированных, временная сеть.
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