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Inspired by the Belt and Road Initiative, we introduce a model of two-stage network games,
when players first form a directed network (the first stage) and then they may reconsider the
actions made at the first stage and choose controls to influence other players in a positive or
negative way (the second stage). At both stages players get their payoffs. Considering a co-
operative version of the game, we examine the problem of subgame network consistency and
design an imputation distribution procedure as a new system of stage payments to guaran-
tee the long-term cooperation. The Shapley value with exogenous directed graph constraint
is used as a cooperative solution concept. Finally, we prove that a cooperative subgame is
convex which ensures the non-emptiness of the core.

Keywords: network games, subgame consistency, imputation distribution procedure, the
Shapley value, directed graph, convex game.

1. Introduction. Inspired by the Belt and Road Initiative, proposed by the Chinese
leadership in 2013 for building a trade and infrastructure network connecting Asia with
FEurope and Africa along the ancient trade routes, we introduce a model of two-stage
network game.

The study on the Belt and Road Initiative based on cooperative network games is not
common in articles [1, 2|. The fair and reasonable allocation rule of cooperative benefits
is one of the essential factors to promote and maintain the long-term stable development
of the Belt and Road Initiative. As a stage payment mechanism, some imputation distri-
bution procedure which redefines the stage payments, aiming to promote the long-term
cooperation, can provide reasonable expected benefits for each participating country. In
the present paper, a cooperative two-stage network game model is established based on
the construction and development of the regional cooperation network of the Belt and
Road. Furthermore, when the chosen solution concept is not time consistent [3], certain
imputation distribution procedure is designed to prevent deviation from the optimal path
of the participating countries.

Social and economic interactions such as international trade, cooperation among firms,
relationship between human beings, etc., can be represented by networks, where countries,
firms or people communicate and are affected by connections. For instance, in [4] an opinion
dynamic game in the context of a social network is considered when influence nodes may
affect other members’ opinions. There are different models of network formation. In paper
[5] the Nash equilibrium network and its dynamic formation process are studied, showing
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that the Nash network may have particular structures, such as the wheel or the star. A
model of dynamic network formation is investigated in [6] and the set of stable networks is
mainly characterized. In the work [7] a dynamic network formation game with incomplete
information is proposed where players do not know the players’ types beforehand, but have
to learn through the dynamics. And in the work [8] the dynamics of a network formation
model are concerned and it is proved that the set of pairwise stable networks coincides
with the set of pairwise Nash stable networks.

Cooperation in the dynamic network games is examined by many authors. A network
formation issue is explored using cooperative game theory in [9], where the cooperative
network formation game is solved with the Nash bargaining solution approach. In the work
[10] the multistage network games with perfect information are considered where players
can change the network structure at each stage, and a method for finding optimal behavior
for players is proposed. In the cooperative case, one of the most valuable methods of fin-
ding consistent solutions in dynamic network games is a construction of the time-consistent
distribution procedures of the cooperative solutions [11]. The time consistency issue is pro-
posed in [3] for the class of cooperative differential games, and later a special mechanism
of stage payments — an imputation distribution procedure — was designed to overcome
the time inconsistency of cooperative solution concepts in [11]. In particular, a two-stage
network game model is constructed in [12], and both issues of time consistency and strong
time consistency are studied for network games. In the paper [13], a multistage game with
transferable payoffs is considered, and a new approach for constructing characteristic func-
tion is proposed. The authors also prove that this new approach leads to time-consistent
solutions. In paper [14], a dynamic network formation game with asymmetric players as
well as random duration is built, and the dynamic consistency of CIS-value is particularly
discussed.

The rest of this paper is organized as follows. In Section 2 the formalization of a
two-stage network formation game is given. In Section 3 we study the cooperative case of
the game and give the expressions of the characteristic functions for the cooperative game
and cooperative subgame. The time consistency problem is discussed and the Shapley
value with exogenous directed graph constraint is particularly investigated in Section 4.
An illustrative example is considered in Section 5. We briefly conclude in Section 6.

2. Model. Let N = {1,2,...,n} be a finite set of players. Consider a two-stage
game, when at the first stage each player chooses the partners, i. e., the subset of the
set of players with whom he wants to make direct connections. Choosing partners and
establishing links, players, thereby, form a directed network. Having built the network,
each player can adjust the network and choose a control at the second stage. In the next
section we strictly define the game.

2.1. First stage: network formation. Having the player set N given, define the
link formation rule in a standard way: directed links, and therefore, a directed network,
are formed as a result of players’ simultaneous choices. Let M; C N \ {i} be the set of
players to whom player ¢ can offer links, and m; = |M;|. The set M;, i € N, is a common
knowledge, i. e. these sets are known for all players. Set S; = {j | j € M;,i € M;} denotes
the set of players with whom player ¢ can have mutual links, and s; = |S;|. Behavior of
player i € N at the first stage is an n-dimensional vector g; = (g;1, - - -, gin) Whose entries
are defined as

1, if player ¢ offers a link to player j € M;,

i = 1
Jig {0, otherwise. (L)
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A set of all possible behaviors of player ¢ € NV at the first stage satisfying equation
(1) is denoted by G;. Then Cartesian product ], G is the set of behavior profiles at
the first stage. In particular, player i € N chooses g; € G;, as a result the behavior profile
(g1,---,9n) defines a directed network g = {(i,j) | gi; =1,4,j € N}. Define neighbors of
player i in network g as elements of the set N;(g) = {4 | (4,5) € g}, and n;(g) = |N;(g)|-
We should notice that player ¢ may have player j as a neighbor (when j € M; and g;; = 1),
but player ¢ may not be a neighbor of player j (when g;; = 0). As the network formed
at the first stage is directed, we define the set of neighbors of player ¢ with whom he has
mutual links in network g as B;(g) = {j | (i,7) € g and (j,4) € g}, and b;i(g) = |Bi(9)|-
Obviously, B;(g) € S;.

After the first stage, each player obtains the stage payoff depending on the structure
of network g. A player gets a fixed benefit from any mutual link and pays fixed costs for
any non-mutual link he possesses. The first-stage payoff function K} of player i € N is
defined as

K} (g) = kbi(g) — c1(ni(g) — bi(9)), (2)
where ¢; > 0 is the unit non-mutual link cost for any player at the first stage, and k£ > 0
is the net profit of any mutual link.

2.2. Second stage: updating the network and choosing controls. The second
stage is realized after the network g is formed at the first stage. At the second stage players
can reconsider their decisions on the set of links they possess by adding new links.

The behavior of player ¢ for updating network g given by n-dimensional vector is
defined in the following way:

dis(g) = 1Y if player ¢ adds a link (4, 7), j € M; \ N;(g), 3)
i) = 0, otherwise.

The set of vectors d;(g) = (d;;(g) : j € N) satistying (3) is denoted by D;(g), ¢ € N.
Profile (d1 (9)y--.,dn (g)) applied to network ¢ forms a network ¢¢, in particular, it can
change the network formed at the first stage. Moreover, at the second stage player i € N
also chooses a control u; from the common set consisting of two controls {4, B}. By
choosing control A, player j € P;(g%) can positively impact player 4, in contrast, player
j € Pi(g?) can affect player i negatively by choosing control B. Then, the behavior of
player i € N at the second stage is a pair (di (9), ul) defining the links d;(g) he initiates,
and control u; which influences the payoffs of other players.

A sequence of different players (i1,...,%,), 7 > 2, forms a directed path from player
i1 to player 4, in network g, if (ip,ip+1) € g for any h = 1,...,7 — 1. The length of the
directed path (iy,...,4,) is defined as the number of links (ip,ip+1), 1 < h <r—1,in
the path. The distance from ¢ to j in network g denoted by p;;(g) is the length of the
shortest directed path from ¢ to j. Let P;(g) denote the set of players to whom there exist
directed paths from player 4 in network g. Notice that if j ¢ P;(g), then p;;(g) = co. Let
MA(i;g) ={j | j € Pi(g),u; = A} and MPB(i;9) = {j | j € Pi(g),u; = B} be the subsets
of players with whom player ¢ has directed paths, i. e. from set P;(g), who choose control
A and B respectively.

The second-stage payoff function K? of player i € N depends on the structure of the
updated network ¢? and controls uj, j € N, chosen by the players with whom he has
directed paths. It is defined as follows:

R = ¥ owme S meal @ o

jeMA(igt) P JEMB(igd) pij(g =
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where k1, ks, co > 0. The payoff to player i is defined as a difference between the impact
of players j € P;(g?) on player i via the shortest directed path from player i to player j
(depending on the controls other players choose, A or B) and the costs of adding links by
player i. And both positive impact and negative impact weaken along the distance of the
directed path from i to j.

We assume that the costs for the link addition increase with the number of stage,
co > c1. This assumption encourages players to create links earlier and can be interpreted
as a bonus of joining the project at the earlier stage. We also suppose that ky > 2¢y, i. e.,
the cost of adding a link at the first stage is twice less than the benefit from a direct link
with one player who chooses “positive” control A.

3. Cooperation in two-stage network games.

3.1. Cooperation at both stages. In this section, we suppose that players cooperate
and jointly choose their behaviors at both stages of the game. Acting as one player and
choosing profile ((g;,d;(g),u;) : i € N), the grand coalition N maximizes the joint payoff

S [K19) + K2 (dil), upom) | (5)
iEN

Let the maximum be obtained when the players realize behavior profile (g;, d}(g),u}), i €
N such that behavior profile (g1, ..., gn) forms network g, then profile (df(g),...,d} (7))
applied to network g forms network g*. Therefore, the joint payoff equals

2 K@) + K2 (0), b )| = max o 5[ K1 (9) + K2 (di(9), ur o) |
% iEN iEN i€EN

Proposition 1. The maximal joint payoff to the players in the two-stage game can
be calculated as follows:

> [KH@) + K2 (@) )| = X [sik = Gmi— s+ 30 ],

iEN iEN JEP() Pij(9)

where g = Uien{(i,7) | j € M;}.

Proof. First, from formula (4) and k1, ks > 0, it directly follows that u; =A,j€N.
As aresult, the presence of any link (7, j) € g increases the sum (5) according to the relation
k1 > 2c¢1. And ¢o > ¢; indicates that all feasible links will be established at the first stage
rather than be added at the second stage with a higher unit cost. Therefore, for any player
i €N, gij=1for j €M;, and d;; =0 for j € N.

Finally, we obviously get § = §* = Ujen{(i,5) | j € M;} and u} = A for any i € N.
Therefore,

Z [K}(g) + K? (d;‘(g),u}i(g*))] = Z [sik — (m; — si)er + Z

iEN ieN JEP;(9)

k1
pii(9)d

This finishes the proof.

The next problem arising with cooperation is an allocation of the joint profit of the
grand coalition. To solve this problem, we define a cooperative TU-game (N, V) and then
apply the allocation mechanism well known in cooperative game theory. The characteristic
function V(S), S C N, can be defined as the maximal payoff that coalition S can guarantee
for itself in a zero-sum game between two players: coalition S maximizing its payoff, and its
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complement N \ S minimizing the payoff to S (a-characteristic function). We provide an
explicit formula to define cooperative version of a two-stage game in the next proposition.

Proposition 2. In the cooperative game (N, V'), the characteristic function V' (5), S C
N, is calculated by formula

v<s>:z[afk—<bf—af>cl+ y _h ]

S
i€s jero Pii97)

where af = [9; N S|; b7 = [M; N S|; g% = Uies{(i,5) | j € M; N S}.
Proof The Value of a-characteristic function for coalition S C N is defined as

V(S)= max min K} (g9) + K2(di(g),up, .
(5) (gi,di(g),ui) (gi,di(g),ui) ZS { ©) ( (©) Pl(gd))]
€S 1EN\S €

From formula (4) and an assumption that k1, k2 > 0, to minimize the payoff of coalition
S, we set u; = B for any player j € N\ S. Similarly, by formula (2), we can easily obtain
that g;; = 0 for j € N\ 'S, i € S. Thus, the presence of link (¢, j), i € S, j € N\ S, strictly
decreases the payoff to coalition S. Then to maximize the payoff of coalition S, the players
from S choose behaviors:

gij =0, dij(g) =0forany i€ S, j€ N\ S.

Therefore,

— 1 2
vis) = (gi,fi?e(z})(,ui) ; {K (9) + K (d 9), Up, (gd))}

here g = {(i,j) | gij = 1,4,7 € S} and §¢ = g U {(i,J) | di;(g) = 1,i,j € S}. Moreover,
since k1 > 2c¢q, then u; = A, i € S, which implies that the presence of any link (¢, 5),
i,j € S, benefits coalition S, and all such links are established at the first stage with a
lower cost. Thus, we obtain

max Z[K()+K2(d()up(g))}:Z{afk—(biS—af)cl—F 3 ’“S],

(9:.:(9).w:) = sebs Pia(9°)

where af = [S; N S|; b7 = [M; N S|; g% = Uies{(i,4) | j € M; N S}.

3. 2 Cooperatzon at the second stage. Now we fix the players’ behavior profile
(g1,---,0n) which forms network g and consider the subgame starting from the second
stage with the given network g. Players jointly choose n pairs (d}(g),u}), ¢ € N, maximi-
zing the sum of the players’ second-stage payoffs. Following Proposition 1, we can easily
calculate the joint players’ payoff at the second stage, that is

> KA @) ub ) =D D

iEN i€N jEP; (g

ng

We define a cooperative TU-game (N, v(g)) and then use a classical cooperative solution
(e. g., the Shapley value) to allocate the joint players’ second-stage payoff. The character-
istic function v(g) is defined similarly to function v using o or maxmin-approach described
in Subsection 3.1.
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Proposition 3. In the cooperative subgame (N, v(g)), the characteristic function
v(g,S), S C N, is given by

g =] Y Aoy

€S LjePi(g)ns pij(g) JEP(9)\S pij(g)

The proof is straightforward and we omit it.

Proposition 4. The trajectory realized by the cooperative strategy profile in a two-
stage game coincides with the one achieved by the subgame perfect Nash equilibrium.

P roof. It suffices to prove that in any subgame which starts from a vertex in the
trajectory realized by the cooperative strategy profile, any deviation from the cooperative
behavior can not strictly increase the payoff. Following Proposition 1, each player forms
all the direct links he is able to have at the first stage and chooses the positive control A
at the second stage under the cooperative strategy profile. Therefore, each player can only
deviate by forming less links at the first stage, or turn to chose the negative control B
at the second stage. Therefore, no player may strictly increase her payoff when the other
players choose their cooperative strategies.

4. Time consistency of cooperative solutions.

4.1. Cooperative solutions. In this section we define the way how to allocate the
total payoff of the grand coalition N among its members in the cooperative game and
its subgame. We use a scheme from cooperative game theory defining an imputation for
characteristic function V.

Definition 1. An imputation in the cooperative network game (N,V) is a vector
&= (&,...,&), satisfying two properties:

o efficiency: » & = V(N);

iEN

e individual rationality: & > V({i}) for any player i € N.

Definition 2. An imputation in the cooperative subgame (N, v(g)) is a vector £(g) =
(&1(g), - .-,&n(9)), satisfying two properties:

e efficiency: 3" &(g) = v(g, N);

iEN

e individual rationality: &;(g) > v(g, {i}) for any ¢ € N.

Let the set of imputations in games (N, V) and (V,v(g)) be denoted by I(V) and I(v(g))
respectively. A cooperative solution concept in cooperative game (N, V) is a rule that
uniquely assigns a subset C.S(V) C I(V) to game (N, V). Similarly, a cooperative solution
concept in the cooperative subgame (N,v(g)) is a rule that uniquely assigns a subset
CS(v(3)) € 1(0(7)) to game (N, v(7)).

4.2. Time consistency. Before the game starts, players come to an agreement to
maximize the total payoff of coalition N and expect to receive the payoffs according to the
imputation £ € C'S(V) in the cooperative game. What will happen if after the first stage
(after receiving the first-stage payoff K}(g)) player i € N recalculates the imputation
according to the same cooperative solution concept? After recalculation, player i’s payoff
according to the same cooperative solution concept will be &;(g) based on the values of
characteristic function v(g,S), S € N. However, getting the payoff K}(g) at the first
stage, he expects to obtain at the second stage is & — K} (g) that is he initially agreed.
Comparing the payoffs-to-go & — K}(g) and &;(g), the player may be not satisfied if they
are different. Therefore, player i € N may consider whether it is worth keeping the coope-
rative agreement to act ‘jointly optimally’ after the first stage, maintaining the network g
unchanged and choosing positive control A from Subsection 3.2. The player may wish to
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deviate from the cooperative strategy profile if this deviation is beneficial for him (it may
be true for the group of players), which increases the vulnerability of cooperation.

Definition 3. An imputation £ € CS(V) is called time consistent in cooperative
game (N, V) if for any player i € N, the following equality holds:

& — K} (9) = &(9),

where £(g) € CS(v(g)).

Remark. Further we restrict our analysis to the case of a single-point cooperative
solutions like the Shapley value or the ES-value. In case of the set-valued cooperative
solutions the imputation £(g) € C'S(v(g)) is not uniquely defined.

In most dynamic games, an imputation is usually not time consistent. For such a situa-
tion, to avoid a player’s deviation, we adopt the stage payment mechanism, an imputation
distribution procedure for &, which is introduced and developed in [3, 11].

Definition 4. An imputation distribution procedure of £ € C'S(V) in the cooperative
two-stage network game (N, V) is a matrix

Bi1 B2
p=1:
Bnl BnZ
such that for each player i € N:
& = B + Bia-

The value B;. is a payment to player ¢ at stage k = 1,2. Therefore, the following
payment scheme is applied: player i € N at the first stage of the game receives payment
Bi1, at the second stage of the game he receives payment 3,5 totally getting the payment
Bi1+ Bi2 in two-stage game which is equal to his desirable i-th component of imputation &.

Definition 5. An imputation distribution procedure 8 of £ € C'S(V) is called time
consistent if for any player i € N, (§ satisfies

& — Bin = &(9). (6)

We should notice that for any imputation £ € CS(V), its time consistent imputation
distribution procedure must exist, since we can always define a (n x 2)-matrix 8 such that

Bir = & — &i(9), Biz = &i(9), (7)

which is an imputation distribution procedure for £ € C'S(V) satisfying condition (6).
4.8. The Shapley value with exogenous directed graph constraint. First, we
describe this cooperative solution concept, which may not be called well known (see [15]
for details). The solution assumes the presence of exogenously given directed graph ~
representing the players’ hierarchy and taking into account the definition of a cooperative
solution. Second, we use this concept to define a cooperative solution in two-stage game
and its subgame. We need to remark that there is no virtual relevance between the directed
communication structure g and directed graph constraint ~ for the solution concept which
will be introduced later. To be precise, the former one is endogenously generated by the
players’ actions and represents the trade interaction among players, whereas the latter
one is exogenously given introducing the power or status relationship among players, and
it cannot be changed by the players’ actions. Naturally, the status relation reflected by

Becruuk CIIGIY. IIpuknannas maremaruka. udopmaruka... 2022. T. 18. B, 1 93



~v may somehow affect the players’ behaviors for making communication connections, for
instance, players with poorer status are not able to initiate direct connections to players
with higher status (see the example in Section 5).

For a directed graph + and coalition S C N, vs = {(¢,)|(¢,7) € 7,i,5 € S} is the
subgraph of v on S. If there exists a directed path in v from player 7 to player j, then j
is a successor of ¢ and 4 is a predecessor of j in . If (4,5) € ~, then j is an immediate
successor of ¢ and 7 is an immediate predecessor of j in <. The set of all successors of
player i in « is denoted by S7(i) and S7 (i) = S7(i) U {i}. We say player i € S dominates
player j € S in vg, denoted i >, j, if j € S75(4) and ¢ ¢ S79(j). And S C N is called a
feasible coalition in v, if i € S, (i,5) € 7, and i ¢ S7(j) imply S7(j) C S. The set of all
feasible coalitions in « is denoted by H (7).

For a permutation 7 : N — N, 7(i) is the position of player i in 7, P(i) = {j €
N|m(j5) < w(i)} is the set of predecessors of i in 7, and P, (i) = P, (i) U {i}. The set of all
permutations on NV is denoted by II. For a TU-game v, a permutation m on N and player
i € N, the marginal contribution of player i is given by m?(7) = v(P,(i)) — v(Px(i)).
A permutation m € II is consistent with v if it preserves the subordination of players
determined by v, i. e., w(j) < 7 (i) only if j =, 4. The set of permutations on N which
are consistent with 7 is denoted by II7. And the paper [15] states that if = € II7, then for
any player i € N, P, (i), P.(i) € H(v).

The Shapley value with v as the exogenous directed graph constraint (see [15]) in
cooperative game (N,v) is defined as

Sh(v.7) = g 3 (). (®)

TellY

In the development of the Belt and Road Initiative, the nations like China play a
pivotal role, such as being the transport hub between other countries or influencing the
economy of some countries greatly by the policy. The status, economic strength and other
relations of the participating countries can be performed by the directed graph of them,
i. e., the exogenous directed graph constraint v, and the nations like China are on the
top naturally. Below we choose the Shapley value with « as the exogenous directed graph
constraint as the specific cooperative solution, i. e., CS(V) = {Sh(V,~)}.

Theorem 1 as well as Theorem 2 respectively exhibits the specific expression of the
Shapley value with v as an exogenous directed graph constraint for player i € N in the
cooperative subgame (N, v(g)) and cooperative game (N, V).

Theorem 1. The components of the Shapley value with v as the exogenous directed
graph constraint in cooperative subgame (N,v(g)) can be calculated by the formula

_ 1 k1 + ko k1 ko
Shi(v(9),7) = 7 ~ == |- 51
gl 721; ]E%:(i) pii(9)  pij(9) je]\%;,(i) pi;(9)

P r oo f. By Proposition 3, we obtain that

o k1 ko

v(g,Pr(2)) = — — —
(@.B:(9) Z l Z . Pia(9) —~ qu(g)]
JEPA (i) LqeP;(g)NPx(7) q€EP;(9)\Pr (i)

and

(G, Pr(i) = > [ 2. pj]:zg) 2 X ]

ieP. (i) LaeP;(@)nP. (i) wepy e Pial9)
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And we get an expression for the difference

v(9,Pr (1)) — v (g, P (i) =
jePa(i) p4i(9) ij(9) jeN\ﬂi’w(i)p”(g)

k‘1+k‘2+ Ky ]_ Z ka . )

Substituting (9) into formula (8), we obtain the specific expression for Sh;(v(g),v). O
Theorem 2. The Shapley value with v as the exogenous directed graph constraint in
a cooperative game (N, V') for player i € N can be calculated by the formula

1
Shi(V.7) =gy >

mellY

1 1 1
.y 3 L ),
J€PL () < <piq(gp"(’)) ij(gp“(”)> Dij (QP”“))N

qEP;(gF= ()

[%a]f“(“ — fr(D)ey +

with fr(i) = |{j € Px(2) \ Si|lj € M; ori e M;}|.
The p r o o f of Theorem 2 is similar to the p r o o f of Theorem 1 if we replace

0(5, Br(3)) — v(g, (1)) with V(Bx(3)) — V(P(0)).
Theorem 3. The cooperative subgame (N,v(g)) is convez.
P roof. For any player ¢ € N and coalitions S,T C N \ {i}, by formula (9), we

obtain k; k; 1 3
_ . _ + Ko 1 2
v(g, S U{i}) —v(g, S) = ( LLELE _)— -
j;; pii(a)  P@)) g;\ o Pii(9)
i
and i I i 1
_ . _ + K2 1 2
aTuh e = Y (ks By 5
jEZT pii(9)  pi@)) E;\T pi(9)
i
If S CT, then

v(@ T U{i}) —v(@.T) — (v(g. S U {i}) — v(z.5)) = Z<k1+k2>(1+ ! )

s pij(9)  pji(9)

Since ki, ko > 0, the expression above is greater than or equal to 0. As a result, in game
(N,v(g)), for any player i € N and S,T C N \ {i}, it holds that

SCT = U(§7TU {Z}) - U(gaT) = U(g,SU {Z}) - U(ga S)

The statement is proved. Moreover, the core of a convex game is nonempty (see
[16, 17]). a

5. A numerical example. As an illustration of the theoretical results, we consider a
four-country game. The exogenous directed graph constraint -, as depicted in Fig. 1, shows
the relations of the four countries in status and economic strength. The restrictions on
countries’ behaviors at the first stage are My = {4}, My = {3}, M5 = {2} and M, = {1, 2},
and the direct economic trade profit is £ = 4. The unit infrastructure cost at the first stage
and the second stage are ¢c; = 1 and ¢y = 2 respectively. In addition, the positive impact
value is k1 = 6 and the negative impact value is ko = 1.
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Fig. 1. Exogenous directed Fig. 2. Cooperative
graph constraint ~y network g

Consider the cooperation at both stages. From the analysis in Subsection 3.1, we know
that g = {(1,4), (4,1),(3,2),(4,2), (2,3)} which is shown in Fig. 2. The players’ payoffs
at the first stage are K1(g) = 4, K2(g) = 4, K1(g) = 4 and K}(g) = 3 given by (2).

The permutations consistent with ~ are m = (2,3,4,1), ma = (3,2,4,1), m3 =
(2,3,1,4) and w4 = (3,2,1,4). And the set of feasible coalitions in v is H(y) = {{2}, {3},
{2,3},1{1,2,3}, {2,3,4}, {1,2,374}}. By Proposition 2 as well as Proposition 3, the val-
ues of the characteristic function in cooperative game (N,V) for the feasible coali-
tions are V(N) =53, V({2})= 0, V({3}) =0, V({2,3}) = V({1,2,3}) = 20 and
V({2,3,4}) = 28. The values of the characteristic function in cooperative subgame
(N, o(g)) are v(g, N) = 38, v(g, {2}) = v(g, {3}) = —1, v(g, {2,3}) = 12, 0(g, {1,2,3}) = 16
and v(g,{2,3,4}) = 20. Then the Shapley value with v as the exogenous directed graph
constraint in cooperative game (N, V) is

Sh(V,~) = (12.5,10, 10, 20.5).
In cooperative subgame (N, v(g)), it is equal to
Sh(v(g),7) = (11,6,6,15).

Since
Sh(V,~) — K'(g) = (8.5,6,6,17.5) # Sh(v(g),7),

by Definition 3, Sh(V,~) is not time consistent. One can notice that player 1 can be
unsatisfied in the subgame as his payoff-to-go before applying the imputation distribution
procedure is less than he expected to get in accordance with the Shapley value (8.5 vs
11). While player 4 is overpaid (17.5 vs 15). To promote and maintain long-term coope-
ration between participating countries, one can design a certain imputation distribution
procedure for Sh(V,~), redefining the stage payments to players according to formula (7)
as follows:

1.5 11
4 6

5 - 4 6 9
5.5 15

which is the time consistent imputation distribution procedure for Sh(V,~).

6. Conclusions. In the paper, we propose a model of Belt and Road Initiative as a
two-stage network game and examine the problem of time consistency when the Shapley
value with exogenous directed graph constraint is a cooperative solution of the game. In
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particular, the directed graph is endogenously given as a constraint to define the Shapley
value which explains the economic or other relations within the group of participating
countries. We propose a simple scheme of verifying the time consistency of the cooperative
solution. As the major initiator, China shoulders important responsibilities in promoting
the stable, sustainable and sound development of the Belt and Road Initiative. As a special
mechanism of stage payments, a certain consistent imputation distribution procedure of
the allocation scheme proposed in the paper guarantees countries to keep the agreement
along the cooperative trajectory.

There are different ways to extend the results: (i) one can consider the unit infra-
structure costs instead of fixed costs assumed in the paper; (ii) uncertainties which lead
to the extended versions of the equilibrium can be included into the model (e. g., see [14,
18]); (iil) we can assume the direct trade profit to be heterogeneous for various countries
highlighting the differences in their economic development and technical levels.
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KOOHepaTI/IBHbIe ABYyXIIIaroBble ceTeBble UI'Dbl C HAIIPABJI€EHHBIMU CBA3AMMNA
" IIOJIO2KUTEJIbHBIM WMJIN OTpUullaTeJIbHbIM BJINAHUEM PII‘]:)OKOB”<

II. Cyms', E. M. Hapuauna®, X. T'ao®

1 Cankt-Ilerepbyprekuii ToCyqapcTBeHHbIH yHUBEepCHTeT, Poccuiickas Peneparus,
199034, Cauxr-Ilerepbypr, YuuBepcurerckas Hab., 7—9

2 Vuusepcurer Iunnao, IlIkona MaTemaTuku u cratucTuku, Kurajickas Hapomnas Pecrny6imka,
266071, Iluamao, Hunrcus Poyx, 308

st mutupoBauusi: Suna P., Parilina E. M., Gao H. W. Cooperative two-stage network games
with directed links and positive or negative influence of players // Becrnuk Canxr-IlerepGypr-
ckoro yuuBepcurera. lIpukiannas maremaruka. Vudopmaruka. [Iporneccsr ynpasienus. 2022.
T. 18. Bem. 1. C. 87-98. https://doi.org/10.21638/11701 /spbul0.2022.107

IIpencrapiaena Mojeb ABYXIIIArOBOM CETEBOIT UTPBI, KOT/Ia UIPOKY CHAYasa (DOPMUPYIOT Ha-
PABJIEHHYIO CeTh (MEPBBIN IIar), a 3aTéM MOTYT MNEePEeCMOTPETHb JEHCTBUS, CACJAHHBIE HA
[IPeBIAYIEM dTale, U BbIOpaTh CTpATEruu, 4TOOBI HOBJIUATEH Ha JAPYTUX UI'POKOB IIOJIOXKU-
TeJIbHBIM WJIM OTPHIATEJBHBIM 06pa3oM (Bropoii mar). Ha 060ux marax UrpoKHd HOJIyYaroT
BBIUTPBIMM. PaccMaTprBasi KOOIEPATUBHYIO BEPCHIO UIPBI, HCCIEAYEM MPOOIEMY JTUHAMU-
4ecKOll yCTOMYMBOCTU U olperesideM NIPOoledypy paclpelesieHnus eJjierka KaK HOBYIO CUCTe-
My TMOIIArOBBIX ILJIATEXKEMN, UTOOBI TAPAHTUPOBATH JOJITOCPOYHOE COTPYIHUIECTBO. SHAUEHUE
BekTopa lllemn ¢ orpanmdyenHneM B Bujie SK30T€HHO 3aJaHHOTO OPHEHTUPOBAHHOTO rpada
HCIIOIb3YEeTCsI B Ka4eCTBe KOHIIENIINH KOOIIEPATUBHOIO pemreHnd. JlokaszaHo, 4TO Koomepa-
TUBHAsI MOJBITPA SIBJISIETCST BBITYKJION, 9TO 06ECIIEYNBAET HEITYCTOTY C-siIpa.

Kamouesvie caosa: cereBast Urpa, JUHAMIYECKAs YCTOWUYMBOCTD, IPOIEAYPA PACIPEIeIeHIST
nesiexxa, Bektop Illemn, oprenTrpoBanHbIil rpad, BBITYyKJIas UIPa.
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