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We study the pursuit-evasion and “life line” differential games of one pursuer and one evader,
whose controls are subjected to constraints given by Grönwall type inequalities. It is said
that an evader has been captured by a pursuer if the state of the pursuer coincides with the
state of the evader. One of the main aims of this work is to formulate optimal strategies of
players and define guaranteed capture time. Here a strategy of parallel convergence (briefly,
Π-strategy) for the pursuer is suggested and proved that it is optimal for pursuit. To solve
the “life line” problem we will investigate dynamics of the attainability domain of players by
Petrosyan method, that is for the attainability domain, conditions of embedding in respect to
time are given. This work grows and maintains the works of Isaacs, Petrosyan, Pshenichnyi,
Azamov and other researchers.
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1. Introduction. In the theory of differential games, problems of pursuit-evasion
occupy a special place due to a number of specific qualities. In the works [1, 2], this quality
was clearly manifested in the construction of the fundamental theory of differential games
and in a number of model problems. The book [3] contains specific game problems that
were discussed in details and proposed for further study. One of these problems is the
so-called “life line” problem that was initially formulated and studied for certain special
cases in the book ([3], Problem 9.5.1). For the case when controls of both players are
subject to geometric constraints, this game has been rather comprehensively studied by
L. A. Petrosyan [4]. In the monograph [4], the notion of strategy of parallel pursuit (briefly,
Π-strategy) was introduced and used to solve the quality problem for the game with a “life
line”. This strategy proposed in a simple pursuit game with geometric constraints became
the starting point for the development of the pursuit method in games with multiple
pursuers (see e.g. [5–21]).

In the theory of differential games, control functions are mainly subjected to geomet-
ric, integral or mixed constraints (see [22–26]). However, differential type constraints on
controls are also arisen in some applied problems such as ecological, technical problems
[27, 28].

In the work [29], the concept of Gr-constraint on controls of players, which in a
certain sense, generalizes geometric constraints, is introduced. The present work proposes
Grönwall type constraints on controls of players for differential games of pursuit-evasion
and for solution of the “life line” game by Petrosyan method. The main purpose of this
work is to construct the Π-strategy of pursuer, and to find the attainability domain of
players, and also to give analytical solution of the “life line” problem in this case.
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2. Statement of problem. In the present paper, controls of the pursuer and evader
are subjected to the following Grönwall constraints [29, 30]:

|u(t)| 6 ρ0 + ρ1t+ k

t∫

0

|u(s)|ds for almost every t > 0, (1)

|v(t)| 6 σ0 + σ1t+ k

t∫

0

|v(s)|ds for almost every t > 0, (2)

respectively, where ρ0, σ0, ρ1, σ1, k are given positive numbers.
Note that in (1) and (2) and in further constraints, as the norms of the control

vectors u and v in the space R
n, we will consider the usual Euclidean norm, i.e. |u| =√

u21 + u22 + ...+ u2n, where u1, u2, ...un are the coordinates of the vector u in the space

R
n, and |v| =

√
v21 + v22 + ...+ v2n, here v1, v2, ...vn are the coordinates of the vector v in

the same space R
n .

Remark. For the cases ρ1 = σ1 = 0, the pursuit-evasion and “life line” problems with
Grönwall constraints on controls have been completely studied in the work [29].

Let motion equations of pursuer P and evader E be given by the followings:

ẋ = u, x(0) = x0, (3)

ẏ = v, y(0) = y0, (4)

correspondingly, where x, y, x0, y0, u, v ∈ R
n, n > 2, x0 6= y0.

Definition 1. A function u(·) = (u1(·), u2(·), ..., un(·)) is called an admissible pur-
suer control in game (3), (4) if it satisfies condition (1). Similarly, a function v(·) =
(v1(·), v2(·), ..., vn(·)) is called an admissible control of the evader in game (3), (4) if it
satisfies condition (2).

The set of all admissible controls of the pursuer and the evader is denoted by the
symbols UGr and VGr, respectively. Then the pairs UGr and VGr form the motion tra-
jectories

x(t) = x0 +

t∫

0

u(s)ds, y(t) = y0 +

t∫

0

v(s)ds

of the pursuer and the evader, respectively.
Definition 2. A function u : R+ × R

n → R
n is called a strategy of the pursuer if

u(t, v) is a Lebesgue measurable function with respect to t for each fixed v and is a Borel
measurable function with respect to v for each fixed t.

Definition 3. It is said that a strategy u = u(t, v) guarantees capture at time moment
T (u) if at some time t∗ ∈ [0, T (u)] an equality x(t∗) = y(t∗) is satisfied for any control
v(·) ∈ VGr of the evader, here x(t) and y(t) are the solutions of the initial value problem

ẋ = u(t, v(t)), x(0) = x0,

ẏ = v(t), y(0) = y0,

where t > 0.
Definition 4. A function v : R+ → R

n is called a strategy of evader if v(t) is a
Lebesgue measurable function with respect to t.
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Definition 5. We say that a strategy v(t) is called winning for evader in the Gr-game
of evasion on [0,+∞) if for any control of pursuer u(t) ∈ UGr the condition x(t) 6= y(t)
holds for all t > 0, here x(t) and y(t) are the solutions of the initial value problems

ẋ = u(t), x(0) = x0,

ẏ = v(t), y(0) = y0.

We use the following statement.

Lemma (see [31]). If |ω(t)| 6 α+
t∫
0

(β + γ|ω(s)|)ds, then |ω(t)| 6 β
γ (e

γt − 1) + αeγt,

where ω(t), t > 0, is a measurable function, and α, β are given non-negative numbers and
γ is a given positive number.

By this Lemma, if u(·) ∈ UGr and v(·) ∈ VGr, then

|u(t)| 6 ϕ(t), t > 0, (5)

|v(t)| 6 ψ(t), t > 0, (6)

where
ϕ(t) =

ρ1
k
(ekt − 1) + ρ0e

kt, ϕ(0) = ρ0, (7)

ψ(t) =
σ1
k
(ekt − 1) + σ0e

kt, ψ(0) = σ0. (8)

It can be easily checked that the converse is not true, that is, the inequalities (5) and
(6) do not imply (1) and (2). To define the notions of optimal strategies of players and
optimal pursuit time, we consider two games.

The goal of the pursuer P is to capture evader E, i.e. achievement of the equality
x(t) = y(t) (Pursuit problem) and the evader E strives to avoid an encounter (Evasion
problem), i.e., to achieve the inequality x(t) 6= y(t) for all t > 0, and in the opposite case,
to postpone the instant of encounter as long as possible.

This paper is devoted to solving the following problems for Grönwall type constraints
on controls.

Problem 1. Solve Pursuit problem in the game (3), (4) with the Grönwall type
constraints (1) and (2) (briefly, Gr-game of Pursuit).

Problem 2. Solve Evasion problem in the game (3), (4) with the Grönwall type
constraints (1) and (2) (briefly, Gr-game of Evasion).

Problem 3. Solve the differential game of “life line”.
3. A solution of the Pursuit problem. In this section, we construct the optimal

strategy for pursuer and give a solve of the Pursuit problem.
To construct a strategy for pursuer, first we assume that pursuer knows t, v(t) at the

current time t.
Definition 6. If δ0 > 0, δ1 > 0, then the function

uGr(t, v) = v − r(t, v)ξ0 (9)

is called a ΠGr-strategy of the pursuer in the Gr-game of pursuit, where r(t, v) = 〈v, ξ0〉+√
〈v, ξ0〉2 + ϕ2(t)− |v|2, ξ0 = z0/|z0|, δ0 = ρ0 − σ0, δ1 = ρ1 − σ1, z0 = x0 − y0, 〈v, ξ0〉 is

the scalar product of the vectors v and ξ0 in the Euclidean space Rn.
Note that

|uGr(t, v)| = ϕ(t). (10)
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Indeed, if we square equalities (9) on both sides, then we get

|uGr(t, v)|2 = |v|2 + r(t, v)(r(t, v) − 2〈v, ξ0〉).

From here and from the form of the scalar function r(t, v), it is easy to calculate equality
(10). Let us now check the admissibility of strategy (9) for every admissible function
v(t) ∈ R

n, t > 0. From inequality (1) and from equalities (7) and (10) we have

ρ0 + ρ1t+ k

t∫

0

|uGr(v(s), s)|ds = ρ0 + ρ1t+ k

t∫

0

ϕ(s)ds =

= ρ0 + ρ1t+ k

t∫

0

[ρ1
k
(eks − 1) + ρ0e

ks
]
ds = ϕ(t) = |uGr(v(t), t)|,

which proves the admissibility of strategy (9).
Proposition 1. If δ0 > 0, δ1 > 0, then the function r(t, v) is continuous and non-

negative for all (t, v) ∈ [0,∞)× R
n.

Proposition 2. For every z0, z0 6= 0, and v(·) ∈ VGr, there exists a scalar function
R(t, v(·)) such that z(t) = z0R(t, v(·)), where z(t) = x(t) − y(t).

Proposition 3. Let Φ(t) = A(1 − ekt) + Bt + 1, where A = δ1+kδ0
k2|z0| , B = δ1

k|z0| . If

δ0 > 0, δ1 > 0 or δ0 > 0, δ1 > 0 is valid, then the function Φ(t) is monotone decreasing in
t, t > 0, and there exists unique positive root of the equation

Φ(t) = 0 (11)

with respect to t. Here we call a guaranteed capture time the positive root of equation (11)
and denote it by TGr.

We prove the statements.
Theorem 1. If δ0 > 0, δ1 > 0 or δ0 > 0, δ1 > 0 is valid, then the ΠGr-strategy

guarantees capture in the Gr-game of pursuit on the time interval [0, TGr].
P r o o f. Let v(·) ∈ VGr be an arbitrary control of the evader, and let the pursuer

use the ΠGr-strategy. Using the equations (3) and (4) we get the initial value problem

ż = uGr(t, v(t)) − v(t) = −r(t, v(t))ξ0, z(0) = z0.

From this, we can see that
z(t) = R(t, v(·))z0, (12)

where

R(t, v(·)) = 1− 1

|z0|

t∫

0

r(s, v(s))ds.

Now we will study the behavior of the function R(t, v(·)) of t. Using the definition of
the function r(t, v), we have

R(t, v(·)) 6 1− 1

|z0|

t∫

0

[
√
〈v(s), ξ0〉2 + ϕ2(s)− |v(s)|2 − |〈v(s), ξ0〉|]ds.
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Since the function f(t, ς) =
√
ς2 + ϕ2(t)− |v(t)|2 − ς , ς ∈ R, is monotone decreasing

with respect to ς for every t > 0. Therefore, by the inequality |〈v(t), ξ0〉| 6 |v(t)| 6 ψ(t),
and also from (7) and (8) we have

R(t, v(·)) 6 1− 1

|z0|

t∫

0

[ϕ(s) − ψ(s)]ds = 1− 1

|z0|

[(
δ1
k2

+
δ0
k

)
(ekt − 1)− δ1

k
t

]
= Φ(t)

or
R(t, v(·)) 6 Φ(t). (13)

According to Proposition 3, there is some time TGr such that Φ(TGr) = 0. Consequently,
from (13) there exists time t∗, 0 6 t∗ 6 TGr, that R(t∗, v(·)) = 0, and hence z(t∗) = 0 by
(12).

Next, we will prove the admissibility of the strategy (9) for all t, t > 0.
It is easy to check that the equality is valid

ϕ̇(t) = kϕ(t) + ρ1.

Integrate both sides of this equality

ϕ(t) = ρ0 + ρ1t+ k

t∫

0

ϕ(s)ds.

Take into account of (10)

|uGr(t, v(t)| = ρ0 + ρ1t+ k

t∫

0

|uGr(s, v(s))|ds.

This finishes the proof of Theorem 1. �

Theorem 2. If conditions of the Theorem 1 hold, then for any control of the pursuer
the strategy of the evader v(t) = −ψ(t)ξ0, t > 0, guarantees to keep the inequality x(t) 6=
y(t) on the time interval [0, TGr).

P r o o f. Let 0 6 t < TGr. Then

〈x(t) − y(t), ξ0〉 = |y0 − x0| −
t∫

0

〈v(s), ξ0〉ds+
t∫

0

〈u(s), ξ0〉ds >

> |y0 − x0|+
t∫

0

ψ(s)ds−
t∫

0

ϕ(s)ds > 0.

Hence, x(t) 6= y(t), 0 6 t < TGr. This completes the proof. �

Theorems 1 and 2 allow us to conclude that TGr is the optimal pursuit time, the
ΠGr-strategy is an optimal strategy for pursuer and v(t) = −ψ(t)ξ0 is an optimal strategy
for the evader E.

4. A solution of the Evasion problem. In the present section, the Evasion problem
is considered as a control problem from the point of view of the evader E. To solve this
problem we suggest a strategy for the evader E and give a definition of solution of evasion.
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Definition 7. We call a strategy of the evader the following control function:

vGr(t) = −ψ(t)ξ0, t > 0, (14)

in the Gr-game of evasion.
We prove the following statement.
Theorem 3. If δ0 6 0, δ1 6 0, then the strategy (14) is winning for the evader in

the Gr-game of evasion.
P r o o f. Let δ0 6 0, δ1 6 0, and u(·) ∈ UGr. Suppose that the evader implements

strategy (14) for all t > 0. Obviously, vGr(t) ∈ VGr. Then for any u(t) we obtain

|z(t)| >

∣∣∣∣∣∣
z0 −

t∫

0

vGr(s)ds

∣∣∣∣∣∣
−

t∫

0

|u(s)|ds = |z0|+
t∫

0

ψ(s)ds−
t∫

0

|u(s)|ds.

Using the inequality |u(t)| 6 ϕ(t) obtained

|z(t)| > Ψ(t),

where Ψ(t) = |z0|+ ((δ1 + kδ0)/k
2)(1 − ekt) + (δ1/k)t.

If δ0 6 0, δ1 6 0, and k > 0, then

dΨ(t)

dt
=
δ1
k

−
(
δ1
k

+ δ0

)
ekt > 0

for all t > 0.
This implies that the function Ψ(t) is monotone increasing on [0,∞). Hence it follows

that Ψ(t) > |z0| > 0. This completes the proof of Theorem 3. �

5. The differential game with “life line”. Here we are going to study mainly the
game with phase constraints for the evader being given by a subset M of R

n which is
called the “life line” (for the evader naturally). (Notice that in the case M = ∅ we have a
simple game.)

In the the Differential Game with “life line” the pursuer P aims to catch the evader
E, i.e. to realize the equality x(t) = y(t) for some t > 0, while the evader E stays in the
zone R

n \M. The aim of the evader E is to reach the zone M before being caught by
the pursuer P or to keep the relation x(t) 6= y(t) for all t, t > 0. Notice that M doesn’t
restrict motion of the pursuer P . Further we will assume initial positions x0 and y0 are
given such that x0 6= y0 and y0 6∈M.

Definition 8. A strategy uGr(t, v) of the pursuer P is called winning on the time
interval [0, TGr] in the game of “life line” if for every v(·) ∈ VGr there exists some moment
t∗ ∈ [0, TGr] that x(t∗) = y(t∗) and y(t) 6∈M while t ∈ [0, t∗].

Definition 9. A control function v∗(·) ∈ VGr of the evader E is called winning in
the game of “life line” if for every u(·) ∈ UGr : there exists some moment t, t > 0, such
that y(t) ∈M and x(t) 6= y(t) while t ∈ [0, t), or x(t) 6= y(t) for all t > 0.

5.1. Dynamics of the attainability domain. Suppose that δ0 > 0, δ1 > 0. In
consequence, a set of capture points may consist of some finite set. We will construct the
attainability domain under these conditions.

Assume that the evader E chooses any control function v(·) ∈ VGr and the pursuer
P applies the strategy (9). Define for each control the following trajectories of the evader
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E and pursuer P :

y(t) = y0 +

t∫

0

v(s)ds, x(t) = x0 +

t∫

0

uGr(s, v(s))ds

on interval t ∈ [0, τ ] respectively, where τ is a pursuit time.
Now we generate the sets

BP (t) = BP (x(t), y(t)) = {p : |p− x(t)| > h(t)|p− y(t)|} , (15)

BP (0) = BP (x0, y0) = {p : |p− x0| > h(0)|p− y0|} (16)

for the pair (x(t), y(t)), where

h(t) =
ϕ(t)

ψ(t)
=

ρ1

k (ekt − 1) + ρ0e
kt

σ1

k (ekt − 1) + σ0ekt
, h(0) =

ρ0
σ0
.

Here it is obvious that the relation y(t) ∈ BP (t) holds for each t ∈ [0, τ ].
Proposition 4. If δ0 > 0, δ1 > 0, then for the scalar function h(t) the relation

h(t) > 1 holds on the time interval [0, τ ].
Theorem 4. The set (15) is equivalent to

BP (t) = x(t) +R(t, v(·))[a(t, z0)S + c(t, z0)] (17)

for all t ∈ [0, τ ], here S is the unit ball whose center is on zero point in R
n and

a(t, z0) =
h(t)|z0|
h2(t)− 1

, c(t, z0) = − h2(t)z0
h2(t)− 1

.

P r o o f. From (15) we get

BP (t) = x(t) +B∗
P (t), (18)

here B∗
P (t) = {p : |p| > h(t)|p+ z(t)|}. Now we will present that B∗

P (t) is a ball. For this
purpose, square both sides of the inequality

|p| > h(t)|p+ z(t)|,

and after that simplify the last result, i.e.

|p|2 > h2(t)
(
|p|2 + 2〈p, z(t)〉+ |z(t)|2

)

or
(h2(t)− 1)|p|2 + 2h2(t)〈p, z(t)〉+ h2(t)|z(t)|2 6 0. (19)

Divide both sides of (19) by the expression h2(t)− 1

|p|2 + 2h2(t)〈p, z(t)〉
h2(t)− 1

+
h2(t)|z(t)|2
h2(t)− 1

6 0. (20)
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Add the expression
(

h2(t)z(t)
h2(t)−1

)2
to both sides of (20), and write it down as

|p|2 + 2

〈
p,

h2(t)z(t)

h2(t)− 1

〉
+

(
h2(t)z(t)

h2(t)− 1

)2

6

(
h2(t)z(t)

h2(t)− 1

)2

− h2(t)|z(t)|2
h2(t)− 1

.

After some simplification we can generate the result
∣∣∣∣p+

h2(t)z(t)

h2(t)− 1

∣∣∣∣ 6
h(t)|z(t)|
h2(t)− 1

.

Hence we have set

B∗
P (t) = {p : |p− c(t, z(t))| 6 a(t, z(t))} = c(t, z(t)) + a(t, z(t))S,

where B∗
P (t) is the ball whose center is on the point c(t, z(t)) = −h2(t)z(t)

h2(t)−1 and whose

radius equals a(t, z(t)) = h(t)|z(t)|
h2(t)−1 . Then from formula (12) we obtain

c(t, z(t)) = −h2(t)z(t)

h2(t)− 1
= −R(t, v(·)) h

2(t)z0
h2(t)− 1

,

a(t, z(t)) =
h(t)|z(t)|
h2(t)− 1

= R(t, v(·)) h(t)|z0|
h2(t)− 1

.

In consequence, the (18) can be written in the form

BP (t) = x(t) +R(t, v(·))
[
h(t)|z0|
h2(t)− 1

S − h2(t)z0
h2(t)− 1

]

or in the form (17) which finishes the proof. �

Now we are going to show monotony of the set BP (t).
Theorem 5 (Petrosyan type theorem [10]). Let: a) ρ0 > σ0, ρ1 > σ1, and

b) ρ1σ0 > ρ0σ1. Then the set BP (t) is monotone in relation to the inclusion while t ∈ [0, τ ],
i.e. BP (t1) ⊃ BP (t2) for 0 6 t1 6 t2.

P r o o f. First, by (17) we determine the derivative of the support function (see [32])
F (BP (t), µ) of the set BP (t) for any µ ∈ R

n and |µ| = 1, that is,

d

dt
F (BP (t), µ) =

d

dt
F (x(t) +R(t, v(·))[a(t, z0)S + c(t, z0)], µ) =

=
d

dt
[〈x(t), µ〉 +R(t, v(·))[a(t, z0)F (S, µ) + 〈c(t, z0), µ〉]] =

= 〈ẋ(t), µ〉 + Ṙ(t, v(·))[a(t, z0) + 〈c(t, z0), µ〉] +
+ R(t, v(·))[ȧ(t, z0) + 〈ċ(t, z0), µ〉] = Φ1(t, µ) + Φ2(t, µ),

where
Φ1(t, µ) = 〈ẋ(t), µ〉 + Ṙ(t, v(·))[a(t, z0) + 〈c(t, z0), µ〉],

Φ2(t, µ) = R(t, v(·))[ȧ(t, z0) + 〈ċ(t, z0), µ〉].
Now we prove that the inequality

d

dt
F (BP (t), µ) = Φ1(t, µ) + Φ2(t, µ) 6 0

is true on t ∈ (0, τ ].
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To do this, we first show that Φ1(t, µ) 6 0. Square the inequality |v(t)| 6 ψ(t) and

multiply both sides of the result by the expression h2(t)
h2(t)−1

|v(t)|2h2(t)
h2(t)− 1

6
ϕ2(t)

h2(t)− 1
.

Make some simplification

|v(t)|2
(
1 +

1

h2(t)− 1

)
6

ϕ2(t)

h2(t)− 1
⇒

⇒ |v(t)|2 6
(ϕ2(t)− |v(t)|2)

h2(t)− 1
. (21)

According to definition of the function r(t, v(t)) (see Definition 6) we can express the
equality ϕ2(t)− |v(t)|2 = r(t, v(t))[r(t, v(t))− 2〈v(t), ξ0〉], and make some substitutions in
(21)

|v(t)|2 6
r(t, v(t))

h2(t)− 1
[r(t, v(t)) − 2〈v(t), ξ0〉]

or

|v(t)|2 + 2r(t, v(t))
〈v(t), ξ0〉
h2(t)− 1

6
r2(t, v(t))

h2(t)− 1
. (22)

Add the expression r2(t,v(t))
(h2(t)−1)2 to both sides of (22), and rewrite it again

|v(t)|2 + 2r(t, v(t))
1

h2(t)− 1
〈v(t), ξ0〉+

r2(t, v(t))

(h2(t)− 1)2
6

6
r2(t, v(t))

(h2(t)− 1)2
+
r2(t, v(t))

h2(t)− 1
. (23)

The fact that the left-hand side of (23) consists of quadratic standard form of the sum of
two vectors, and as a consequence of simplifying the right-hand side of (23) we obtain

∣∣∣∣v(t) +
r(t, v(t))

h2(t)− 1
ξ0

∣∣∣∣ 6
h(t)r(t, v(t))

h2(t)− 1
. (24)

It is obvious that for any vector µ ∈ R
n, |µ| = 1 the inequality

〈
v(t) +

r(t, v(t))

h2(t)− 1
ξ0, µ

〉
6

∣∣∣∣v(t) +
r(t, v(t))

h2(t)− 1
ξ0

∣∣∣∣

is valid.
According to this and from (24), we have

〈
v(t) +

r(t, v(t))

h2(t)− 1
ξ0, µ

〉
6
h(t)r(t, v(t))

h2(t)− 1
⇒

⇒ 〈v(t), µ〉 − r(t, v(t))

(
1− h2(t)

h2(t)− 1

)
〈ξ0, µ〉 6

h(t)r(t, v(t))

h2(t)− 1
⇒

⇒ 〈v(t) − r(t, v(t))ξ0 , µ〉+
h2(t)r(t, v(t))

h2(t)− 1
〈ξ0, µ〉 6

h(t)r(t, v(t))

h2(t)− 1
⇒
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⇒ 〈ẋ(t), µ〉 − r(t, v(t))

|z0|

(
− h2(t)

h2(t)− 1
〈z0, µ〉+

h(t)

h2(t)− 1
|z0|
)

6 0 ⇒

⇒ 〈ẋ(t), µ〉 + Ṙ(t, v(·))[a(t, z0) + 〈c(t, z0), µ〉] 6 0. (25)

Formula (25) means that Φ1(t, µ) 6 0.
Now we are going to present that the inequality Φ2(t, µ) 6 0 holds. Because of

R(t, v(·)) > 0 on t ∈ (0, τ ], it is enough to prove that

ȧ(t, z0) + 〈ċ(t, z0), µ〉 =
(

h(t)

h2(t)− 1

)′
|z0| −

〈(
h2(t)

h2(t)− 1

)′
z0, µ

〉
6 0. (26)

First, compute the first derivative on the right-hand side of (26)

(
h2(t)

h2(t)− 1

)′
=

−2h(t)h′(t)

(h2(t)− 1)2
.

On the other hand, using (7), (8) and based on the condition b) of Theorem 5 we have
the following:

dh(t)

dt
=
ϕ′(t)ψ(t) − ϕ(t)ψ′(t)

ψ2(t)
=

(ρ1σ0 − ρ0σ1)e
kt

ψ2(t)
> 0. (27)

Consequently, this inequality
(

h2(t)
h2(t)−1

)′
6 0 is satisfied in the interval (0, τ ].

Now multiply both sides of the inequality 〈ξ0, µ〉 6 1 (for any µ ∈ Rn, |µ| = 1) by

the expression −
(

h2(t)
h2(t)−1

)′

−
(

h2(t)

h2(t)− 1

)′
〈ξ0, µ〉 6 −

(
h2(t)

h2(t)− 1

)′
. (28)

Add
(

h(t)
h2(t)−1

)′
to both sides of (28), and obtain

(
h(t)

h2(t)− 1

)′
−
(

h2(t)

h2(t)− 1

)′
〈ξ0, µ〉 6

(
h(t)

h2(t)− 1

)′
−
(

h2(t)

h2(t)− 1

)′
. (29)

Compute the right-hand side of (29) and in relation to (27) we obtain this result

(
h(t)

h2(t)− 1

)′
−
(

h2(t)

h2(t)− 1

)′
= − h′(t)

(h(t) + 1)2
6 0.

From this, we generate the following relation for the left-hand side of (29):

(
h(t)

h2(t)− 1

)′
−
(

h2(t)

h2(t)− 1

)′
〈ξ0, µ〉 6 0. (30)

Multiply both sides of (30) by |z0| and we get (26). Hence it follows that Φ2(t, µ) 6 0.
This completes the proof. �

5.2. A solution of the game with “life line”. It has been noted above that Isaacs’
game with “life line” was comprehensively solved by L. A. Petrosyan using the method of
approximating measurable controls by piecewise constant.
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Theorem 6. If Theorem 5 is valid and M
⋂
BP (0) = ∅, then the ΠGr-strategy (9) is

winning in the game (1)–(4) with “life line”.
P r o o f. The proof directly follows from Theorem 5. �

Now we define a set in the form

BE(t) = {p : |p− x0| > χ(t)|p− y0|}

for all t ∈ (0, TGr], where

χ(t) =

t∫
0

ϕ(s)ds

t∫
0

ψ(s)ds

=
(ρ1 + kρ0)(e

kt − 1)− kρ1t

(σ1 + kσ0)(ekt − 1)− kσ1t

and TGr is the first positive root of the equation (11). It’s obvious that limt→0 χ(t) =
ρ0

σ0
.

Theorem 7. Let the conditions ρ0 > σ0, ρ1 > σ1 and ρ1σ0 > ρ0σ1. Then χ(t) is
increasing on interval t ∈ (0, TGr] and the set BE(t) is decreasing with respect to t ∈
(0, TGr], i.e., an inclusion BE(t1) ⊃ BE(t2) holds for any t1, t2 ∈ (0, TGr] and 0 < t1 6 t2.

P r o o f. First of all, we will prove that χ(t) is increasing, i.e. χ′(t) > 0 under the
conditions of Theorem 7. For this purpose, calculate the derivative of χ(t)

dχ(t)

dt
=
k2(ρ0σ1 − ρ1σ0)(e

kt − 1− kektt)

[(σ1 + kσ0)(ekt − 1)− kσ1t]2
.

Now, analyze a sign of expression l(t) = ekt − 1 − kektt for every t ∈ (0, TGr], i. e.:

a) limt→0 l(t) = 0; b) dl(t)
dt = −k2ektt 6 0. So, l(t) 6 0 on interval t ∈ (0, TGr].

Therefore, χ
′

(t) > 0 is true if ρ1σ0 > ρ0σ1. Since χ(t) is increasing on t ∈ (0, TGr], we
can write a relation χ(t) > 1 on that interval.

From (15), (16), we have

BE(t) = x0 −
χ2(t)

χ2(t)− 1
z0 +

χ(t)

χ2(t)− 1
|z0|S. (31)

Then we determine the character of the derivative of support function F (BE(t), µ), when
|µ| = 1 and t ∈ (0, TGr]:

d

dt
F (BE(t), µ) = −

(
χ2(t)

χ2(t)− 1

)′
〈z0, µ〉+

(
χ(t)

χ2(t)− 1

)′
|z0| =

=
2χ(t)

(χ2(t)− 1)2
χ′(t)〈z0, µ〉 −

χ2(t) + 1

(χ2(t)− 1)2
χ′(t)|z0| =

= (2χ(t)〈ξ0, µ〉 − χ2(t)− 1)
χ′(t)|z0|

(χ2(t)− 1)2
=

= −|ξ0χ(t)− µ|2 χ′(t)|z0|
(χ2(t)− 1)2

6 0.

�

Theorem 8. Let δ0 > 0, δ1 > 0, ρ1σ0 > ρ0σ1 and M
⋂
BE(TGr) 6= ∅. Then for

evader E there exists some control which is winning in the game (1)–(4) with “life line”.
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P r o o f. Let p ∈ M
⋂
BE(TGr) and the evader E implements the control v∗(t) =

ψ(t)ν, v∗(·) ∈ VGr, where ν = (p − y0)/|p − y0|. Since |v∗(t)| = ψ(t) for all t > 0, then
substituting this into inequality (2) we get formula

σ0 + σ1t+ k

t∫

0

|v∗(s)|ds = σ0 + σ1t+ k

t∫

0

ψ(s)ds =

= σ0 + σ1t+ k

t∫

0

[σ1
k
(eks − 1) + σ0e

ks
]
ds = ψ(t) = |v∗(t)|,

which proves the admissibility of the control v∗(t) for all t > 0. Then time of the achieve-
ment of the point p is η̄ for evader and we have

η̄∫

0

|v∗(s)|ds =
η̄∫

0

ψ(s)ds = |p− y0|, (32)

and from of Theorems 1 and 7, it follows, that η̄ 6 TGr. We suppose that for the pursuer
exists a certain control function u∗(·) ∈ UGr that x(t̄) = y(t̄) holds and t̄ < η̄. If z(t) =
x(t)− y(t) and z(0) = z0, then from ż(t) = u∗(t)− v∗(t) we have

z(t̄) = z0 +

t̄∫

0

(u∗(s)− v∗(s))ds = 0.

From this, it follows that

∣∣∣∣∣∣
z0 −

t̄∫

0

v∗(s)ds

∣∣∣∣∣∣
6

t̄∫

0

|u∗(s)|ds 6
t̄∫

0

ϕ(s)ds ⇒

⇒ |z0|2 − 2

t̄∫

0

ψ(s)ds〈z0, ν〉+




t̄∫

0

ψ(s)ds




2

6




t̄∫

0

ϕ(s)ds




2

⇒

⇒




t̄∫

0

ψ(s)ds




2

(χ2(t̄)− 1) + 2

t̄∫

0

ψ(s)ds〈z0, ν〉 − |z0|2 > 0 ⇒

⇒
t̄∫

0

ψ(s)ds > f(t̄) :=
1

χ2(t̄)− 1
[
√
〈z0, ν〉2 + |z0|2(χ2(t̄)− 1)− 〈z0, ν〉]. (33)

If χ(t) is increasing for t ∈ (0, TGr], then it is easy to check that f(t) is decreasing function
on (0, TGr]. Consequently from t̄ < η̄, it follows that f(η̄) 6 f(t̄).

Since p ∈ BE(TGr) and η̄ 6 TGr, then from Theorem 7 we have p ∈ BE(TGr) ⊂ BE(η̄).
Hence we obtain

|p− x0| > χ(η̄)|p− y0| ⇒
⇒ |z0 − (p− y0)|2 > χ2(η̄)|p− y0|2 ⇒
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⇒ |z0|2 − 2〈z0, p− y0〉+ |p− y0|2 > χ2(η̄)|p− y0|2 ⇒
⇒ 0 > (χ2(η̄)− 1)|p− y0|2 + 2|p− y0|〈z0, ν〉 − |z0|2 ⇒

⇒ |p− y0| 6 f(η̄) 6 f(t̄).

Then from the last inequality and from (32), (33), we have
t̄∫
0

ψ(s)ds >

η̄∫
0

ψ(s)ds or

t̄ > η̄, though this contradicts our supposition. �

Theorem 9. Let δ0 6 0, δ1 6 0. Then for the evader E there exists some control
which is winning in the game (1)–(4) with “life line”.

P r o o f. Let the evader use the control (14), and let the pursuer choose an arbitrary
control u(·) ∈ UGr. Then, similar to the proof of Theorem 3, under the conditions of the
current theorem we again derive |z(t)| > Ψ(t) > |z0| > 0 for any t ∈ [0,+∞), from which
we infer z(t) 6= 0, i.e. x(t) 6= y(t) (see Proposition 2). Therefore, by virtue of Definition 9
in the game (1)–(4) with a “life line” the evader E is also considered to be winning. The
proof is complete. �

6. Example. Assume that the game (1)–(4) is described as (see Figures 1 and 2)

ẋ = u, x0 = (0, 0), |u(t)| 6 2 + 2
√
2t+

t∫

0

|u(s)|ds, t > 0, (34)

ẏ = v, y0 = (0,−1), |v(t)| 6
√
3 + 2t+

t∫

0

|v(s)|ds, t > 0. (35)

Figure 1. The representation which the ΠGr-strategy is winning
in the game (34), (35) with “life line”

Then based on Theorem 1, we can obtain TGr = 0.37. In accordance with Theorem 4,
we generate the set BP (0) = {p : |p− c| 6 a, c = (0,−4), a = 4 + 2

√
3}. A set of points

p = (p̃1, p̃2) on a boundary of BP (0) consists of the circle

∂BP (0) = {(p̃1, p̃2) : p̃21 + (p̃2 + 4)2 = 28 + 16
√
3}.
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Figure 2. The representation which the evader wins
in the game (34), (35) with “life line”

Using (31) and Theorem 7, the set BE(TGr) = {p : |p− c| 6 a, c = (0,−3.323), a =
2.779} is constructed. A set of points p = (p̂1, p̂2) on a boundary of BE(TGr) consists of
the following circle:

∂BE(TGr) = {(p̂1, p̂2) : p̂21 + (p̂2 + 3.323)2 = (2.779)2}.

We wish to thank professors A. A. Azamov and G. I. Ibragimov for discussing this
paper and for providing some useful comments.
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Изучается дифференциальная игра с «линией жизни» для одного преследователя и од-
ного убегающего при управлениях удовлетворяющих неравенств типа Грануолла. Убе-
гающий считается пойманным со стороны преследователя, если состояние убегающего
совпадает с состоянием преследователя. Одна из основных целей настоящей работы —
построение оптимальных стратегий для игроков и определение оптимального времени
поимки. Для преследователя предлагается стратегия параллельного сближения (ко-
роче, Π-стратегия) и доказывается ее оптимальность. Для решения задачи с «линией
жизни» исследуется динамика области достижимости игроков методом Петросяна, т. е.
найдены условия монотонности по включению относительно времени этой области до-
стижимости. Отметим, что работа продолжает исследования Айзекса, Петросяна, Пше-
ничного, Азамова и др.

Ключевые слова: дифференциальная игра, преследование, убегание, ограничение Гро-
нуолла, стратегия, параллельное преследование, область достижимости, игра с «линией
жизни», сфера Аполлония.
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