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We study the pursuit-evasion and “life line” differential games of one pursuer and one evader,
whose controls are subjected to constraints given by Gronwall type inequalities. It is said
that an evader has been captured by a pursuer if the state of the pursuer coincides with the
state of the evader. One of the main aims of this work is to formulate optimal strategies of
players and define guaranteed capture time. Here a strategy of parallel convergence (briefly,
II-strategy) for the pursuer is suggested and proved that it is optimal for pursuit. To solve
the “life line” problem we will investigate dynamics of the attainability domain of players by
Petrosyan method, that is for the attainability domain, conditions of embedding in respect to
time are given. This work grows and maintains the works of Isaacs, Petrosyan, Pshenichnyi,
Azamov and other researchers.

Keywords: differential game, pursuer, evader, Gronwall constraint, strategy, parallel pursuit,
attainability domain, “life line” game, the Apollonius sphere.

1. Introduction. In the theory of differential games, problems of pursuit-evasion
occupy a special place due to a number of specific qualities. In the works [1, 2|, this quality
was clearly manifested in the construction of the fundamental theory of differential games
and in a number of model problems. The book [3] contains specific game problems that
were discussed in details and proposed for further study. One of these problems is the
so-called “life line” problem that was initially formulated and studied for certain special
cases in the book ([3], Problem 9.5.1). For the case when controls of both players are
subject to geometric constraints, this game has been rather comprehensively studied by
L. A. Petrosyan [4]. In the monograph [4], the notion of strategy of parallel pursuit (briefly,
II-strategy) was introduced and used to solve the quality problem for the game with a “life
line”. This strategy proposed in a simple pursuit game with geometric constraints became
the starting point for the development of the pursuit method in games with multiple
pursuers (see e.g. [5-21]).

In the theory of differential games, control functions are mainly subjected to geomet-
ric, integral or mixed constraints (see [22-26]). However, differential type constraints on
controls are also arisen in some applied problems such as ecological, technical problems
27, 28].

In the work [29], the concept of Gr-constraint on controls of players, which in a
certain sense, generalizes geometric constraints, is introduced. The present work proposes
Gronwall type constraints on controls of players for differential games of pursuit-evasion
and for solution of the “life line” game by Petrosyan method. The main purpose of this
work is to construct the II-strategy of pursuer, and to find the attainability domain of
players, and also to give analytical solution of the “life line” problem in this case.
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2. Statement of problem. In the present paper, controls of the pursuer and evader
are subjected to the following Gréonwall constraints [29, 30]:

¢
lu(t)] < po + pit + k/ |u(s)|ds for almost every ¢ > 0, (1)
0
t
[v(t)] < o9 + o1t + k/ |v(s)|ds for almost every t > 0, (2)
0

respectively, where pg, 0g, p1, 01, k are given positive numbers.

Note that in (1) and (2) and in further constraints, as the norms of the control
vectors u and v in the space R", we will consider the usual Euclidean norm, i.e. |u| =
\/u% +u? + ...+ u2, where uy,us,...u, are the coordinates of the vector u in the space
R", and |[v| = \/v} + 03 + ... + v2, here vy, va, ...v;, are the coordinates of the vector v in
the same space R™ .

Remark. For the cases p; = 01 = 0, the pursuit-evasion and “life line” problems with
Gronwall constraints on controls have been completely studied in the work [29].

Let motion equations of pursuer P and evader E be given by the followings:

& =wu, z(0)=xo, (3)

y =, y(O) = Yo, (4)

correspondingly, where z,y, zo, yo,u,v € R™, n > 2, 2y # yo.

Definition 1. A function u(:) = (u1(:),ua("),...,un(-)) is called an admissible pur-
suer control in game (3), (4) if it satisfies condition (1). Similarly, a function v(-) =
(v1(+),v2()y ey n(+)) s called an admissible control of the evader in game (3), (4) if it
satisfies condition (2).

The set of all admissible controls of the pursuer and the evader is denoted by the
symbols Uqg, and V., respectively. Then the pairs Ug, and Vg, form the motion tra-

jectories
t t

2(t) = w0+ [ uls)ds, y(t)=yo+ | v(s)ds
/ /

of the pursuer and the evader, respectively.

Definition 2. A function u : Ry x R™ — R" is called a strategy of the pursuer if
u(t,v) is a Lebesgue measurable function with respect to t for each fixed v and is a Borel
measurable function with respect to v for each fized t.

Definition 3. It is said that a strategy u = u(t,v) guarantees capture at time moment
T(u) if at some time t* € [0,T(u)] an equality x(t*) = y(t*) is satisfied for any control
v(+) € Var of the evader, here x(t) and y(t) are the solutions of the initial value problem

where t > 0.
Definition 4. A function v : Ry — R™ is called a strategy of evader if v(t) is a
Lebesgue measurable function with respect to t.
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Definition 5. We say that a strategy v(t) is called winning for evader in the Gr-game
of evasion on [0,+00) if for any control of pursuer u(t) € Ug, the condition x(t) # y(t)
holds for all t > 0, here x(t) and y(t) are the solutions of the initial value problems

& = u(t), =(0) = xo,
g =v(t), y(0) = yo.
We use the following statement.
t
Lemma (see [31]). If |w(t)| < a+ [(B + ~|w(s)|)ds, then |w(t)] < %(e”t — 1)+ ae™,
0

where w(t), t > 0, is a measurable function, and o, B are given non-negative numbers and
v is a given positive number.
By this Lemma, if u(-) € Ug, and v(-) € Vg, then

lu()] < @(t), t=0, (5)
o(t)] < $(t), t>0, (6)
where
@) = B (M = 1)+ poet, 0(0) = pu, (1)
W(t) = %(ekt — 1)+ oe, $(0) = oy, 8)

It can be easily checked that the converse is not true, that is, the inequalities (5) and
(6) do not imply (1) and (2). To define the notions of optimal strategies of players and
optimal pursuit time, we consider two games.

The goal of the pursuer P is to capture evader FE, i.e. achievement of the equality
x(t) = y(¢) (Pursuit problem) and the evader E strives to avoid an encounter (Evasion
problem), i.e., to achieve the inequality x(t) # y(t) for all ¢ > 0, and in the opposite case,
to postpone the instant of encounter as long as possible.

This paper is devoted to solving the following problems for Gronwall type constraints
on controls.

Problem 1. Solve Pursuit problem in the game (3), (4) with the Gronwall type
constraints (1) and (2) (briefly, Gr-game of Pursuit).

Problem 2. Solve Evasion problem in the game (3), (4) with the Gronwall type
constraints (1) and (2) (briefly, Gr-game of Evasion).

Problem 3. Solve the differential game of “life line”.

3. A solution of the Pursuit problem. In this section, we construct the optimal
strategy for pursuer and give a solve of the Pursuit problem.

To construct a strategy for pursuer, first we assume that pursuer knows ¢, v(t) at the
current time ¢.

Definition 6. If 6g > 0, 61 > 0, then the function

ug(t,v) = v —r(t,v)é (9)

is called a Mg,-strategy of the pursuer in the Gr-game of pursuit, where r(t,v) = (v, &) +
V(0,860)% + ©2(t) — [v]?, &0 = 20/]20], b0 = po — 00, 61 = p1 — 01, 20 = To — Yo, (v, &o) is
the scalar product of the vectors v and &y in the Fuclidean space R™.

Note that

lug: (£, v)| = ¢(t). (10)
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Indeed, if we square equalities (9) on both sides, then we get
luc:(t,v)[* = [o]? +r(t,0) (r(t,v) — 2(v, &)

From here and from the form of the scalar function r(t,v), it is easy to calculate equality
(10). Let us now check the admissibility of strategy (9) for every admissible function
v(t) € R™, ¢t > 0. From inequality (1) and from equalities (7) and (10) we have

t t
po+ prt+ k / [ucs(v(s), )|ds = po + prt + k / o(s)ds =
0 0

t

—po-t it + e [ [GH 1)+ poeks] ds = p(0) = ucle(t). B,
0

which proves the admissibility of strategy (9).

Proposition 1. If 6o > 0, §1 = 0, then the function r(t,v) is continuous and non-
negative for all (t,v) € [0,00) x R™.

Proposition 2. For every zg, zo # 0, and v(-) € Vg, there exists a scalar function
R(t,v(-)) such that z(t) = zoR(t,v(+)), where z(t) = x(t) — y(t).

Proposition 3. Let ®(t) = A(1 — e**) + Bt + 1, where A = ‘%j‘ff‘“, B = %. If
30 = 0,91 >0 o0rdy >0, >0 is valid, then the function ®(t) is monotone decreasing in
t,t > 0, and there exists unique positive root of the equation

O(t) =0 (11)

with respect to t. Here we call a guaranteed capture time the positive root of equation (11)
and denote it by Tg:-

We prove the statements.

Theorem 1. If 5o > 0, 61 > 0 or 69 > 0, 61 = 0 is valid, then the Ilg,-strategy
guarantees capture in the Gr-game of pursuit on the time interval [0, TGy

Proof Let v(-) € Vg, be an arbitrary control of the evader, and let the pursuer
use the Ig,-strategy. Using the equations (3) and (4) we get the initial value problem

2 =uc(t,v(t)) —v(t) = —r(t,v(t))é, 2(0) = 2.

From this, we can see that
z(t) = R(t,v(:))zo, (12)

where

.
R(t,v(-))=1- a0l O/r(s,v(s))ds.

Now we will study the behavior of the function R(t, v(-)) of t. Using the definition of
the function r(t,v), we have

R(t,0() <1- |Z—10| /[\/<v(8),§o>2 +¢2(s) = [o(8)]2 = [(v(s), o) llds.
0
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Since the function f(t,¢) = /<2 + ¢2(t) — [v(t)|2 — ¢, ¢ € R, is monotone decreasing
with respect to ¢ for every ¢ > 0. Therefore, by the inequality [(v(t), &) < |v(t)] < ¥(t),
and also from (7) and (8) we have

R(t,v(-) —ioo/t s:1—|z—10| [<%+i—°) (ekt—l)—%t} d(t)

or

R(t,v(-)) < (F). (13)

According to Proposition 3, there is some time T, such that ®(7Tg,) = 0. Consequently,
from (13) there exists time t*, 0 < t* < Tgy, that R(¢*,v(-)) = 0, and hence z(¢*) = 0 by
(12).

Next, we will prove the admissibility of the strategy (9) for all ¢, ¢t > 0.

It is easy to check that the equality is valid

B(t) = kp(t) + 1.

Integrate both sides of this equality

t
p(t) = po + pit + k/so(S)dS
0

Take into account of (10)

t

Nm@wGH=m+pﬁ+@/mm@w@M%-
0

This finishes the proof of Theorem 1. O
Theorem 2. If conditions of the Theorem 1 hold, then for any control of the pursuer
the strategy of the evader v(t) = —(t)&, t > 0, guarantees to keep the inequality x(t) #
y(t) on the time interval [0, Tqy).
Proof Let 0<t<Tg,. Then

t

(z(t) —y(t), &) = |yo — wo| — /<U(5),§0>d5 + /<U(5) o)ds >
0

0

t

t
> [yo — ol + [ Y(s)ds — [ ¢(s)ds > 0.
[ren-]

Hence, z(t) # y(t), 0 < t < Tg,. This completes the proof. O
Theorems 1 and 2 allow us to conclude that T, is the optimal pursuit time, the
IIg,-strategy is an optimal strategy for pursuer and v(t) = —(¢)&g is an optimal strategy
for the evader E.
4. A solution of the Evasion problem. In the present section, the Evasion problem
is considered as a control problem from the point of view of the evader E. To solve this
problem we suggest a strategy for the evader E and give a definition of solution of evasion.
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Definition 7. We call a strategy of the evader the following control function:

var(t) = =¥(t), t 20, (14)

in the Gr-game of evasion.

We prove the following statement.

Theorem 3. If 6y < 0, 61 < 0, then the strategy (14) is winning for the evader in
the Gr-game of evasion.

Proof Let dg <0, 61 <0, and u(-) € Ug,. Suppose that the evader implements
strategy (14) for all ¢ > 0. Obviously, vg,(t) € Vgr. Then for any u(t) we obtain

t t

2] > |20 - / vor(s)ds| — [ Jus)ids = zo] + / wl)ds — [ Jus)ds,
0 0

0 0
Using the inequality |u(t)| < ¢(t) obtained
[2(0)] = ¥ (D),

where U (t) = |zo| + ((61 + kdo)/k?)(1 — eFt) + (81 /k)t.
If 6o <0, 61 <0, and k > 0, then

dv(t) & (6 .
N — = | = >
dt k < gt 50) e =0

for all ¢ > 0.

This implies that the function ¥(¢) is monotone increasing on [0, co). Hence it follows
that W(¢) > |20| > 0. This completes the proof of Theorem 3. O

5. The differential game with “life line”. Here we are going to study mainly the
game with phase constraints for the evader being given by a subset M of R™ which is
called the “life line” (for the evader naturally). (Notice that in the case M = () we have a
simple game.)

In the the Differential Game with “life line” the pursuer P aims to catch the evader
E, i.e. to realize the equality z(t) = y(t) for some ¢ > 0, while the evader E stays in the
zone R™ \ M. The aim of the evader E is to reach the zone M before being caught by
the pursuer P or to keep the relation z(t) # y(t) for all ¢, ¢t > 0. Notice that M doesn’t
restrict motion of the pursuer P. Further we will assume initial positions zg and gy are
given such that xzg # yo and yg & M.

Definition 8. A strategy ug.(t,v) of the pursuer P is called winning on the time
interval [0, Ta,] in the game of “life line” if for every v(-) € Vg, there exists some moment
t* €0, Tay] that x(t*) = y(t*) and y(t) € M while t € [0,t*].

Definition 9. A control function v*(-) € Vg, of the evader E is called winning in
the game of “life line” if for every u(-) € Ug, : there exists some moment t, T > 0, such
that y(t) € M and z(t) # y(t) while t € [0,t), or z(t) # y(t) for all t > 0.

5.1. Dynamics of the attainability domain. Suppose that 69 > 0, 61 > 0. In
consequence, a set of capture points may consist of some finite set. We will construct the
attainability domain under these conditions.

Assume that the evader E chooses any control function v(-) € Vg, and the pursuer
P applies the strategy (9). Define for each control the following trajectories of the evader
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F and pursuer P:

on interval ¢ € [0, 7] respectively, where 7 is a pursuit time.
Now we generate the sets

Bp(t) = Bp(z(t),y(t)) = {p: lp—z(t)] = h(t)lp — y(®)[}, (15)

Bp(0) = Bp(zo,y0) = {p : [p — xo| = h(0)|p — yol} (16)
for the pair (x(t),y(t)), where

(ek}t _ 1) + poek}t

) & _ P
MO =5 = me D e MO gy

Here it is obvious that the relation y(t) € Bp(t) holds for each t € [0, 7].

Proposition 4. If §o > 0, 81 > 0, then for the scalar function h(t) the relation
h(t) > 1 holds on the time interval [0, 7].

Theorem 4. The set (15) is equivalent to

Bp(t) = z(t) + R(t,v(-))[a(t, 20)S + c(t, 20)] (17)

for all t € [0,7], here S is the unit ball whose center is on zero point in R™ and

2 2(t)z
a(t, zg) = %’ c(t, zo) = —%.
P roof From (15) we get
Bp(t) = x(t) + Bp(1), (18)

here B5(t) = {p: |p| = h(t)|p + 2(t)|}. Now we will present that B} (t) is a ball. For this
purpose, square both sides of the inequality

Ip| = h(t)lp + 2(t)],

and after that simplify the last result, i.e.
pI* = h2(t) (Ipl* + 2(p, 2(8)) + |2(t)]?)

or

(R(t) = 1)[pl* + 202(t) (p, 2(t)) + h*(t)[2(1)]* < 0. (19)
Divide both sides of (19) by the expression h%(t) — 1

2h2(t)(p, 2(t)) N h2(t)|=(t)?

PP+ e 12(f) — 1

<0. (20)
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2
Add the expression (]222((?)2_(?) to both sides of (20), and write it down as
h2(t)z(t R2(1)z()\° _ (B2()2() 7 h2()|2(t)?
w2 +2(p, 2()Z() L (0N (RN @l
h2(t) -1 h2(t)—1 h2(t) -1 h2(t) —1
After some simplification we can generate the result

BR2(0)(t) | h()=(0)
%*W@—‘<W@—'

Hence we have set

Bp(t) ={p:Ip —ct,2(t))| < alt, 2(1))} = c(t, 2(t)) + a(t, 2(1))S,

_ h2(®)=()

where B%(t) is the ball whose center is on the point c(¢,z(t)) = -1 and whose
radius equals a(t, 2(t)) = h(z,tzg(t)‘ Then from formula (12) we obtain
_R2()z(t) h?(t)zo
t,z(t)) = =—R(t,v()) 5+
ot 2(0) =~z o3 = ~R00) 3
h(t)|z(0)] )lZ(t)l h(t) ol
t,2(t =R(t,v(")) 5~
alt.=(0)) = oy = Rlt.00) iz
In consequence, the (18) can be written in the form
h(t)|zo] h2(t)zo
Bp(t) = z(t) + R(t,v(- S —
P(0) = o(0) + R(t.0() | 753208 =
or in the form (17) which finishes the proof. O

Now we are going to show monotony of the set Bp(t).
Theorem 5 (Petrosyan type theorem [10]). Let: a) py > o9, p1 > o1, and
b) p1og = pooi. Then the set Bp(t) is monotone in relation to the inclusion while t € [0, 7],
i.€. Bp(lfl) D) Bp(tg) f07“ 0<t <t
P r o o f. First, by (17) we determine the derivative of the support function (see [32])
F(Bp(t), ) of the set Bp(t) for any p € R™ and |p| = 1, that is,
d

S P(Bp (1), 1) = P (a(t) + R(t,o())[alt, 20)S + et 20)) 1) =

= % [(2(t), ) + R(t, v(-))[alt, 20) F(S, ) + (c(t, 20), w)]] =

= (&(t), 1) + R(t,0(-))[a(t, z0) + (e(t, z0), )] +
+ R(t’ ’U('))[d(ﬁ, ZO) + <é(ta ZO)aM)] = (I)l(tau) + (I)Q(ta ,u),

where
®1(t, ) = (E(1), ) + R(t,0())[alt, 20) + (c(t, 20), )],
Do(t, ) = R(t, v(-)[a(t, z0) + (&(t, 20), ).
Now we prove that the inequality

d

S F(Br(t), 1) = 1(t, 1) + S2(t, ) <O

is true on t € (0, 7].
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To do this, we first show that ®;(¢,u) < 0. Square the inequality |v(t)| < ¢(¢) and

multiply both sides of the result by the expression 73 i t() ) T

[v@®PR*() _ %)
Rt —1 SR -1

Make some simplification

2 1 <P2(t)
@) (H EOE 1) S -1
= |U(t)|2 < M (21)

h2(t

) —
Accordlng to definition of the function r(t v(t)) (see Definition 6) we can express the
equality ¢?(t) — [v(t)]? = r(t,v(t))[r(t,v(t)) — 2{v(t),&)], and make some substitutions in

(21)
s _ 7t 0(0)
V0O < Jagy oIt v(0) — 2(0(), &)

or

o(t)]? + 2r(t, v(t)) ,iz((ti’f@ < 22((’5 2)“@1). (22)

Add the expression % to both sides of (22), and rewrite it again

r2(t, v(t))

1 )
2 (1) — < (t), &) + m <

< r?(t, v(t)) + r?(t,v(t)
(R2(t) = 1)2 ~ h2(t) —1

The fact that the left-hand side of (23) consists of quadratic standard form of the sum of

two vectors, and as a consequence of simplifying the right-hand side of (23) we obtain

30

It is obvious that for any vector p € R™, |u| =1 the inequality
r(t,v(t))
t <
<U( )+ h2(t) — 1507 W
is valid.

According to this and from (24), we have

r(t, v(t)) h@)r(t, v(t))
0+ 1o 1) < i =T =

o +2r(t, v () 753

(23)

? r(t,v
= (v(t), pu) — r(t,v(t)) (1 _ h;(Lt)(t) ) (€0, 1) < W N
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r(t,v 2
= (a0 - 80D (- 20

P S R T
= (&(t), ) + R(t,v(-)[alt, z0) + (c(t, 20), m)] < 0. (25)

Formula (25) means that ®;(¢, u) < 0.
Now we are going to present that the inequality ®a(t,) < 0 holds. Because of
R(t,v(:)) = 0ont € (0,7], it is enough to prove that

alt20) + @lt20). 1 = () |20|—<(#(”1) u> <o (20)

First, compute the first derivative on the right-hand side of (26)

( h2(t) )’_—Qh(t)h'(t)

Rt —1)  (h2(t) — 1)

|20|) <0=

On the other hand, using (7), (8) and based on the condition b) of Theorem 5 we have
the following:
dh(t) _ ' (Oy(t) — e’ (t) _ (proo — poor)e®

) T R (21)

i
Consequently, this inequality (%) < 0 is satisfied in the interval (0, 7].

Now multiply both sides of the inequality (&, ) < 1 (for any u € R™, |u| = 1) by

!/
the expression — (%)

) (%)/@o,m <- (#@1) (28)

/
Add (hQ}zgll) to both sides of (28), and obtain

(F) - (i) o = () - (i)

Compute the right-hand side of (29) and in relation to (27) we obtain this result

From this, we generate the following relation for the left-hand side of (29):

TORY R2(t) '
) o = <0.
Multiply both sides of (30) by |zo| and we get (26). Hence it follows that ®5(t, 1) < 0.
This completes the proof. O

5.2. A solution of the game with “life line”. It has been noted above that Isaacs’
game with “life line” was comprehensively solved by L. A. Petrosyan using the method of
approximating measurable controls by piecewise constant.
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Theorem 6. If Theorem 5 is valid and M () Bp(0) = 0, then the Ilg,-strategy (9) is
winning in the game (1)—(4) with “life line”.

P r o o f. The proof directly follows from Theorem 5. 0

Now we define a set in the form

Be(t) ={p: |p—xo| = x(t)lp — yol}

for all t € (0, T, where

¢
p(s)ds
P i P g V
t (0’1 + koo)(ekt — 1) — kot
[ (s)ds
0
and Tg, is the first positive root of the equation (11). It’s obvious that lim¢—, x(t) = £2.

Theorem 7. Let the conditions py > oo, p1 > o1 and p1og = poo1. Then x(t) is
increasing on interval t € (0,Tqy| and the set Bg(t) is decreasing with respect to t €
(0, TGy], i.e., an inclusion Bg(t1) D Bg(te) holds for any t1,t2 € (0,Tay] and 0 < t1 < to.

P r o o f. First of all, we will prove that x(¢) is increasing, i.e. x'(¢) > 0 under the
conditions of Theorem 7. For this purpose, calculate the derivative of x(t)

dx(t)  k%*(poo1 — proo)(eFt — 1 — keFtt)

dt [(0’1 + koo)(ekt — 1) — kUlt]2
Now, analyze a sign of expression I(t) = e** — 1 — keF't for every t € (0,Tq,], i.e.:
a) limyyo [() = 0; b) 48 — _E2ekty < 0. So, I(t) < 0 on interval € (0, T

Therefore, x (t) = 0 is true if pyog > pooy. Since x(t) is increasing on t € (0, Ta.], we
can write a relation x(¢) > 1 on that interval.
From (15), (16), we have

X2 (t) x(t)
20 -1 2w -

Then we determine the character of the derivative of support function F(Bg(t), ut), when
|| =1 and ¢ € (0, Tqy]:

2 ! !
G700 =~ (2105 ) Goond + () ol -

RN S
= e — 12X e = ramy 1y
KOl
) — 12

= —|¢ox(t) — u|27( f(”'ZO'

X' (t)|z0] =

= (2x(t){€o, 1) — X2(t) — 1)

20— 12 =

O
Theorem 8. Let 6o > 0, 61 > 0, pioo = poo1 and M (\Bge(Ta:) # 0. Then for
evader E there exists some control which is winning in the game (1)—(4) with “life line”.
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Proof Let p € M Bg(Tg:) and the evader E implements the control v*(t) =
P(t)v, v*(-) € Var, where v = (p — 40)/|p — yol|- Since |v*(t)] = ¢ (¢) for all ¢ > 0, then
substituting this into inequality (2) we get formula

00+01t+k/|v*(s)|ds :oo—i—olt—i—k/z/}(s)ds =

t

= g0+ o1t + k/ [%(e’“ 1)+ aoeks] ds = ¥(t) = |[v* (1),
0

which proves the admissibility of the control v*(¢) for all ¢ > 0. Then time of the achieve-
ment of the point p is 7 for evader and we have

[ syds = [w(s)as = 1p - ol (32)
0 0

and from of Theorems 1 and 7, it follows, that 7 < T,. We suppose that for the pursuer
exists a certain control function u*(-) € Ug, that z(f) = y(f) holds and ¢ < 7. If z(¢) =
x(t) — y(t) and z(0) = 2o, then from 2(t) = u*(t) — v*(¢) we have

z(t) = 20 + /(u*(s) —v*(s))ds = 0.
0

From this, it follows that

E) \/ (20,0)% + |20[2(x*(1) = 1) = (20,v)].  (33)
If x(¢) is increasing for t € (0, Tq,|, then it is easy to check that f(¢) is decreasing function
on (0,Tg,]. Consequently from ¢ < 7, it follows that f(7) < f(%).
Since p € Bg(Ta,) and 7 < Ty, then from Theorem 7 we have p € Bg(Ta,) C Br(7)-
Hence we obtain
[P =0l = Xx(M)p = yol =

= lzo — (= yo)I* = X*(M)Ip — ol
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= 201> = 2(20,p — y0) + |p — vol* = X>(M)|p — wo|* =
=02 (*@) — L)|p — yol® + 2[p — yo|{z0,v) — |20]* =
= |p—yol < f(7) < f(D).

t
Then from the last inequality and from (32), (33), we have [ (s)ds = [(s)ds or
0

Ot—3

t > 7, though this contradicts our supposition. O

Theorem 9. Let 69 < 0, §1 < 0. Then for the evader E there exists some control
which is winning in the game (1)—(4) with “life line”.

P r o o f. Let the evader use the control (14), and let the pursuer choose an arbitrary
control u(-) € Ug,. Then, similar to the proof of Theorem 3, under the conditions of the
current theorem we again derive |z(t)| = ¥(¢) > |z > 0 for any t € [0, +00), from which
we infer z(t) # 0, i.e. z(t) # y(t) (see Proposition 2). Therefore, by virtue of Definition 9
in the game (1)—(4) with a “life line” the evader E is also considered to be winning. The
proof is complete. O

6. Example. Assume that the game (1)—(4) is described as (see Figures 1 and 2)

t
i=u, xo=(0,0), |u(t)|<2+2\/§t+/|u(s)|ds, t>0, (34)
0
t
J=v, yo=(0,-1), |v(t)|<\/§+2t+/|v(s)|ds, £>0 (35)
0
y1
8. - =
M
61 ; .
— .,
7 44
2 ; 3 ; B j 4 8 O.P ; ; % .\'\ 3 ; ; .I! : : . . ; x‘
16 14 —12 —10 -8/ 6 4 2 4 2 4 6 8\ 10 42 14 16 1§ 20 22 24 26 28
| E \ i
| 21 —
| By0)
| 41
\ 67 |
\\ ol /f
\\ -10 /

. -

Figure 1. The representation which the Ilg,-strategy is winning
in the game (34), (35) with “life line”

Then based on Theorem 1, we can obtain Tg, = 0.37. In accordance with Theorem 4,

we generate the set Bp(0) = {p: |p—c| < a, ¢ =(0,-4), a =4+ 2v/3}. A set of points
p = (P1,P2) on a boundary of Bp(0) consists of the circle

OBp(0) = {(p1,P2) : B5 + (P2 + 4)* = 28 + 16V/3}.
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w =

87654321 lol 23 4 s5\6 7 8 9 1011 12 1314
E \

-1
) A\ |

3
Be(Tar) ,

Figure 2. The representation which the evader wins
in the game (34), (35) with “life line”

Using (31) and Theorem 7, the set Bg(Ta,) ={p:|p —¢| < a, ¢ =(0,-3.323), a =
2.779} is constructed. A set of points p = (p1,p2) on a boundary of Bg(Tg,) consists of
the following circle:

OBg(Tay) = {(p1,p2) : P37 + (P2 + 3.323) = (2.779)%}.

We wish to thank professors A. A. Azamov and G. L. Ibragimov for discussing this
paper and for providing some useful comments.
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duddepennuanbaas urpa ¢ «JInHUEH >KU3HN» IpU orpanndyeHusx I'poryosuia
Ha yIpaBJIeHUS

B. T. Camamos*, A. X. Axbapos®
1 HamaHraHcKuit rOCyIapCTBEHHBI yHUBEPCUTET,
VY3bekucran, 116019, Hamaunran, yi. Yituu, 316

2 AHIVKAHCKHIA TOCYIapPCTBEHHBIH yHUBEPCUTET,
V36ekucran, 170100, Auguzkan, YHuBEpCUTETCKas yiI., 129
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st muruposanusi: Samatov B. T., Akbarov A. Kh. Differential game with a “life line” under the
Gronwall constraint on controls // Becrauk Canxr-IlerepGyprckoro ynusepcurera. Ilpukiaanas
maremaruka. Mudopmaruka. IIponeccsr ynpasimenus. 2024. T. 20. Bem. 2. C. 265-280.
https://doi.org/10.21638 /spbul0.2024.211

N3y4aercsa nuddepeHnpanpaas Urpa ¢ «JIMHUEH XKU3HU» JJI OJTHOTO IIPECTIEOBATEN U OJI-
HOTO yOeraromero mpu yupaBIeHnsIX YIOBIECTBOPSIONINX HEPABEHCTB Tuna ['panyosta. Yoe-
FalONIVMil CINTAETCs IMOAMAHHBIM CO CTOPOHBI IIPECJIE/IOBATEIsI, €CJIM COCTOsIHUE yOeraromero
COBIIAJIAET C COCTOsTHMEM IipecienoBaresisi. OJ[Ha U3 OCHOBHBIX IiejIell HacToseil paboTsl —
ITIOCTPOEHHE ONTHMAJIBHBIX CTPATErUil /IJIs UTPOKOB M OMPEJIEJIEHNE ONNTUMAIBHOIO BPEMEHU
nouMku. JljIsi mpecsieioBaTesis peJIaraeTcsl CTPaTernsl apaJljiebHOro cOsmKeHns (Ko-
pode, II-cTpaTerusi) U JOKa3bIBAETCS €€ ONTHMAJIBLHOCTL. JIJIs pelleHus 3a1adu C «JIMHUeH
KU3HU» UCCTIEYETCA JUHAMUKA OOJACTH JOCTHKUMOCTH UTPOKOB MeTosmoM llerpocsna, T. e.
Hali/IeHbl YCJIOBUsI MOHOTOHHOCTH 110 BKJIIOYEHWIO OTHOCHTEILHO BPEMEHHU ITON 0bJIacTu 10-
crmkuMocTu. OT™MeTHM, 9TO paboTa IPOI0JIKAeT uccienoBanust Aiizekca, [lerpocsina, [Tmre-
HUYHOrO, A3aMoOBa M Ip.

Karouesvie caosa: nuddeperinmaabHas Urpa, npecjiejoBanne, yberanue, orpanndyenne ['po-
HYOJLJIa, CTPATErusl, apalIeJIbHOE IPECIeI0OBAHNE, OOJIACTD JJOCTUKUMOCTH, UI'PA C «JIMHUAEH
KusHuy, chepa Anosonust.
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