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The research of the problem of optimal control of the Navier — Stokes evolutionary differential
system, considered in Sobolev spaces, the elements of which are functions with carriers
in an n-dimensional network-like domain, is presented. Such domain consists of a finite
number of subdomains, mutually adjacent to certain parts of the surfaces of their boundaries
according to the graph type. For functions that are elements of these spaces, the conditions
for the existence of traces on the surfaces of the joining are presented and the conditions of
adjacency subdomains to which these functions satisfy are described. In applied questions of
the analysis of the processes of transport of continuous media, the conditions of adjacency
describe the regularities of the flow of fluid through the boundaries of the adjacent domains.
The paper presents the results of following main research questions: 1) weak solvability
of the initial boundary value problem for the Navier —Stokes system and obtaining the
conditions for the existence of a weak solution to this problem; 2) the formation and solution
of optimal control problems of various types of Navier —Stokes system. The fundamental
approach to the analysis of the weak solvability of the initial boundary value problem is its
reduction to the differential-difference problem (semi-digitization of the original system by
a time variable) and subsequent use of a priori estimates for weak solutions of the obtained
boundary value problems. The obtained a priori estimates are used to prove the theorem of
the existence of a weak solution of the original differential system and indicate the way of the
actual construction of this solution. A universal approach to solving the problems of optimal
distributed and starting control of the Navier — Stokes evolutionary system is presented. The
latter essentially expands the possibilities of analyzing non-stationary network-like processes
of applied hydrodynamics (for example, processes of transporting various types of liquids
through network or main line pipelines) and optimal control of these processes.

Keywords: differential-difference system, evolutionary Navier — Stokes system, network-like
domain, solvability, optimal control.

1. Introduction. The paper be considered the question of the existence of a weak
solution and the associated problems of optimal control of the Navier — Stokes evolutiona-
ry system, the spatial variable of which belongs to a network-like domain. The structure
of such a domain is similar to the geometry of a connected graph (see [1-4] and the bib-
liography there). The work is a continuation of the studies presented in [5, 6], a essential
difference from which was the use of a priori estimates of the differential-difference system
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to analyze the weak solvability of the Navier — Stokes differential system using a priori
estimates. Namely, according to the obtained weak solutions of the differential-difference
system, piecewise-constant approximations on the time variable are constructed, which
form a weakly compact sequence of approximations of the solutions of the Navier —Stokes
system. The obtained results are the basis for the analysis of the problems of optimal
distributed and starting control of the Navier — Stokes evolutionary system, which have
interesting analogies with the applied problems of optimization of multiphase hydrody-
namic flows and composite polimers |7, 8].
2. Notations and concepts. Consider a bounded network-like domain & € R™
(n > 2), consisting of N subdomains Sy (I € Iy = {1,2,..., N}), united in a certain way
to each other by means of M,1< M < N -1, nodal places wj (€I =1{1,2,...,M}):
M
S =SU®, here § = U Sy, @ = U wj, where NSy =0 (1 # 1), wiNw; =10
=1 j=1
(G # 34, SiNw; = 0 [5]. In these nodal places ¥; have common boundaries, which
are the surfaces of the joining. If the index j € I is fixed, then the nodal place is
a totality of subdomains. Such a set consists of subdomain ;; and subdomains & Iz

I € InG) € Ing, 0 = 1 ,m;, from where follows the existence of the surface of the
adjoining S; (measS; > 0) of bubdomaln $; to the subdomains its respective subsurfaces

S;. (measS;, >0),.=1,m; :S5; = U Sj.. In this case, S; is part of the boundary 0,

and S;, (v =1,m;) are the correspondmg parts of the boundaries 8%l The latter means
that w; it is defined by the adjacency surface S, and the subsurfaces S . are the surfaces
of the joining to &, l; € In(j), ¢ =1,m;. The boundary 0S¥ of a domain S is defined by

1=1 =
subregions ; (I € In) are star-shaped relative to the ball fixed at each ! (I € Iy).

It should be noted that the structure of the network-like domain < is similar to the
structure of the graph-tree [1, 2|, we also note that any connected subdomain of the domain
S also has a network-like structure.

Next, the initial boundary value problem for the evolutionary transfer equation is
considered, which is a mathematical model of the transportation of a viscous fluid through
pipeline networks.

3. Navier — Stokes evolutionary system. For functions Y (z,t) = {y1 (2, t), y2(z, ),
coyn(z, )}, 2, t € S =3 % (0,T) (z = {x1,22, ..., Tn}, T < 00), consider the system

N M
the ratio 0% = |J 9\ U S;. It is assumed that the surfaces S; (j € In) are smooth,
j=1

—I/AY+ZY;§;/ +grad p = f, (1)
i=

divy = (é & = ) (2)

however, for Y(z,t) in the nodal places w; (j € Ips) there are conditions (conditions of

adjacency the subdomain Sy, to S, I, € Ing, 0 =1, m;)

Y(xvt”xESﬂcas‘lj = Y($7t)‘$65j LC@%Z/ , L= 1amj7 (3)
OY (1) A 6Y(:1: 0

J TP
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on surfaces S;, Sj, (¢ =1,m;) at t € (0,T), where n; and n;, are the external normals to
S; and S;,, respectively, « = 1,m;, j =1, M. The relationships

Y(xat”t:O = Yb(l‘), T € %7 (5)

Y(z,t)]zeos =0, (6)

describe the initial and boundary conditions. The set of relations (1)—(6) are the initial
marginal boundary value problem (differential system (1)—(6)) for functions Y (z,t), p(z,t)
in a closed domain St (St = (IJII) x [0,T)).

In the mathematical description of the processes of transportation of viscous fluids, &
it belongs to R? and models the network (or main) hydraulic system, which is the carrier
of the hydraulic flow. The function Y (x,t) describes the quantitative characteristics of the

velocities of the hydraulic flow, Z ng—y are the convective change of the velocity vector.

The ratios (1), (2) and (3), (4 ) deﬁne the Navier — Stokes system, which simulates the
flow of a viscous fluid (viscosity is equal v) through the hydraulic system and forms the
law of fluid flow at the branch places of the hydraulic system, (5) and (6) are initial and
boundary conditions, respectively, p(x,t) is pressure in the hydraulic system.

Remark 1. You can use other conditions of adjacency (3), (4) depending on the
goals pursued of an applied nature. It is necessary that the requirement of solvability of
the problem (1)—(6) be satisfied (see work [5]).

To obtain the conditions of solvability of the differential system (1)—(6), a differential-
difference system of the form

Y (k) = Y(k—1)] = vAY (k) + Z Yi(k) 8 = (k) — grad p(k),
divY(k) =0, k=1,2,... K, y(0)=Yy(x),

(7)

Y (K)|weos =0, k=1,2,... K, (8)
is used, where 7 = T/ K is step partition of segment [0, T'] by points k7 (k =1, 2, e, K—1);
V() = Yk YR = () — Y= D fo(k) = folaik) = 1 [ fw0)d
)
pr(k) == pr(z; k) f p(x,t)dt (k=1,2,...,K).
(k 1

Let’s introduce the necessary spaces, using the classical lebesgue and Sobolev spaces.
Denote through La ()™ space, the elements of which are real Lebesgue measurable vector-

functions u(z) = {ui(z,t),u2(z,t),...;un(z,t)}, x = (xl,xg,.. xn) € R™. The ratios
(u,v) = [u(z)v(z)dzr and |lu| = \/(u,u) (here [ ¢(x)dz = Z f x)dz) in Ly(3)™ define

the scalar product and the norm, respectively. Let D($)™ is set of infinitely differentiable fi-
nite functions ¢(z), for which divp = 0: D(I)" = {¢ : ¢ € D(I)™, divp = 0}. The closure
D(F)" in Ly(3)™ defines space H(S), the elements of space H!(S) are functions () €
H () with a generalized derivative g—‘; € Ly(S3)™. The scalar product in H!(S) is defined by

oz Ox
difference system (7), (8) we introduce the state space V() as a closure in H1(3) the

1/2
the formula (2,1); = (2,) + (52, 52), llplly = (el + I152]*) . For the differential-

set of functions p € D(J)™ that satisfy the relations f (%z)d + Z f a“’(x ds = 0.
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We will first analyze two differential forms:

plu,v) = 3 [ gitgerde, o(u,v,w) = > [uy g:;wz

i,7=1% L,k=1g

for which the integrals g“’ g;ﬂ dz and f U g“’ w;dx converge (here u(x) = {ui(x),

UQ(QT),...,’LL”(Q?)}, ’U,(LL‘) _\S{ul( )7u2( )" ( )} u( = {u1< )’u2( ),7un(:13)}) (See
also [9, pp. 79-81]).

Lemma 1. The form p(u,v) is continuous by u, v on VI(S) x VE(S), the form
o(u,v,w) is continuous by ¥, W on Ly(S)™ x VE(S) x La(I)™.

Proof For ZZJ and L of form p(u,v) we get

aujavj 8uJ 81)]
[ G el < W dew )2dz < [lus [los 1 (9)

(where the Cauchy —Bunyakovskii inequality is used). Similar actions for uw; and g;’;
and then for u% and w? of form o(u,v,w), reduce to the following inequalities:
8 .
|fukdxk idz| < \/ﬁ\ URW;) d;l:\/f( Zi)2d;v <
(10)

8
< of [ uide 1/ (552 2d$14/fw4d$ lunll L@ 03l lwill Ly s
S

From inequality (9) follows continuity p(u,v) on Vi (3) x VH(S), continuity o(u,v,w) on
(VH(S) N Ly(3)") x VEH(S) x Ly(S)™ follows from (10).

Lemma 2. Let u, w are arbitrary elements of space V(S3), then: 1) o(u,u,w) =
—o(u,w,u); 2) g(u,w,w) =0; 3) o(w,w,w) =0.

n
P roof. The first statement follows from the sum Y [ ug g;“k w;dz, when integrating
ik=1%
in parts all its integrals, the following statements follow from the first.

Lemma 3. From the weak convergence of sequences {tm tm>1, {VUm tm>1 0 L2 ()" to
the elements u and v follows the convergence of the sequence {tmvm tm>1 in norm La ()™
to the element uv.

P r o o f. Let’s show convergence f Um U (dxdt  — f uv{dxdt on any element of

ST
((x) € VA(S). Since the sequences {um }m>1, {Vm fm>1 converge weakly, the elements u,,
U, are bounded in total and ||v., || + ||v]| < ¢, |[um|l + ||ul] < ¢. The sequence {v,CFm>1
converges strongly in Ly ()™ to the element v{. Indeed, with arbitrarily small given € > 0,
let’s take as ((x) a function ﬁ{(x), then

[vm¢ — UCHLz(g)n < lom — UHLQ nHCHLz(\y)w (HUmHLz n t+ ||U||L2($)") < ec,
what means convergence {v,;,(}m>1 to v¢ in Lo($)™. This and the estimates presented
below

|fumvm§d3:— fqudJc\ f| U U, — wv)(|dx <
< J (lumll + H’UmC — o]l + [0l — ul) de

Ry

lead to the completion of the proof of the lemma statement.
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The following approach for analyzing the weak solvability of the system (1)—(6) is
based on the construction of a priori estimates of the solutions of the differential-difference
system (7), (8) and use of the Galerkin method, which assume look for functions Y (k) €
Va(S), k = 1,2,..,K, in the form of expansions on a special basis of space Vi (J) —

n
system of generalized eigenfunctions of the operator AY = 3 %Zg Such a system forms
i=1 "t

the basis in the spaces V}(S) and La(S)™ (proof similar to the one given in the work [10]).

Let us turn to the issue of constructing a priori estimates of the weak solution of the

system (7), (8). Let the input data Yy(x), f(z,t) of systems (1)—(6) satisfy the conditions

Yo(z) € V3(S), f(z,t) € La1(S7)" (the elements of space Lo 1(S7)™ belong to Ly (Sr)”
T

and have a finite norm |ju]l,, = [ ([ u(x,t)*dz)*/?dt). This means that for the system (7),
05

(8) the input data Yy(z) € VE(S), f-(k) € La(S)™.
Definition 1. The set of functions {Y (k) € V&(S), k = 1,2,..., K}, where for each k
(k=1,2,...,K) the function Y (k) satisfies the relation

(Y(k)e,n) +vp(Y(k),n) + oY (k), Y (k),n) = (f-(k),n), (11)
Y (0) = Yo(z),

under any function n(zx) € V§(S), is called the weak solution of the differential-difference
system (7), (8).
Since the set of generalized eigenfunctions {U;(x)};>1 is the basis in space V{ (J), then

m

for approximations Y;, (k) = > gf,mUi(m) of the functions Y (k), k = 1,2, ..., K, consider
i=1

the system

(Yo (k)e, Us) +vp(Yon (K), Us) + o(Yin (k), Y (k), Us) = (f-(k), Us),
i=1,2..,m, k=12 .K,

Y (0) = Yom(2), (13)

where Y, (2) = Z g%, Ui(z) (g9, — const), Yom(z) — Yo(x) in norm H(S).
Theorem 1 Let Yo(z) € VE(Q), fr(k) € La(I)" (k = 1,2,...,K). For functions
Y (k), k=1,2,..., K, valid estimates
Yo (B) | < 1Y O) + 20/~ (F)ll3,1 k=1,2,..., K,

[¥on ()2 + 27 z 125022 < 0 ()2 + (1 R)p0)?) k=12, K,

where the constant C' is independent of T || f-(k )H2 1=T Z [FACSIR

K =
P r o o f. From the relation Y(k — 1) = Y (k) — 7Y (k): follows the obvious relation
27(Y (k), Y(k)) = Y2(k) +72Y (k)2 = Y2(k —1). The ratio (11), (12) multiplied by QTgl,m
and summed by ¢ from 1 to m, we get

Y2(k) = Y2(k — 1) + 72Y2 (k); + 2rv0(Yim (k), Yin (k) = 27(f+ (k), Yin(K)),
k=12 .., K,
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(p(Yin(k), Y (K), Yin(K)) = 0 by virtue of statement 3 of Lemma 2), which follows

OY.,
Yo ()1 = [ Yin (k= D) + 72| Vo (k) |* + 27| D E)12 < 27| £, (k) ]| Vi (B) ],
k=1,2,.. K,

(14)

and further
Yo ()P = [V (k — DII” < 27| £ () || Yo ()], &k =1,2,..., K. (15)

For inequality (15), consider two cases:
o [V (B[ + [V (k = 1)l > 0. Since iz la—sp < 1, then, dividing (15) by
1Yo (R)[| + [V (B — 1|, we get

1Yo (R) | = (Yo (k = D) < 27[[ f-(R) I, k=1,2,..., K; (16)

o |V (B)| + |[Ym(k — 1) = 0. From (15) follows 0 < 27 f- (k)| ||V (k)| and
Vi ()1 = 1Y (k — D12 < 27)| £ (B)| IYm (K|, & = 1,2, ..., K, and again we get (16).

If we sum (16) by & from 1 to k, we get the first estimate in the statements of the
theorem:

k , ,
1Yo (R)[| < 1Y (O)] +2 32 7l f= (k)] = Yol + 2[[ f7 (k) |21 (17)
k=1
k=1,2,.. K,

’ k ’ ’ .
1+ (R)lla,0 = 32 7lf+(E )] (I - [l2,1 is analogue of the norm [| - [|2,1 ).
K'=1
If we sum (14) by k" from 1 to k, using inequalities (17), we get a second estimate in
the statements of the theorem:

6Y k
[V (K)|)? + 270 z [ Pmk) 2
k=1

k
3Ym k
VB 72 5 [FnR)el2 270 32 [Pl 2 (18)
k' =1 k' =1

<C (%12 + (1 (B)12,)2) s k=120 K,

where the constant C' does not depend on 7.

Consequence. The obtained a priori estimates make it possible to show a weak
solvability of the differential-difference system (7), (8) (and hence (12), (13)), which is
established similarly to the reasoning given in the work.

Remark 2. It is easy to show that from the estimates (17), (18) follows the continuous
dependence of the weak solution {Y (k) € V3(3), k = 1,2,..., K} of the differential-
difference system (7), (8) on the input data Yy(z), fr(k).

To analyze the differential system (1)—(6), we will introduce the necessary spaces.
Denote through W10(37) the space with elements u(x,t), the generalized derivatives

1/2
Quet) of which belong to La(37)™, [|ullyro(gy = (Hu” + 2 ) , and let W(S7)

is the space with elements u(z,t) € La(S7)"™, for which %zt), M belong to Lo (7)™,
1/2
lullwr (s = (||u|| 18?4+ ) 8y ) . For the elements of space W*(Jr) the following
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properties are valid [11, p. 32]: elements are continuous according to ¢ in norm Lo($)"
and traces of elements on sections S by planes t = tg (tp € [0,T]) belong to Lo ().

Denote by Q1 (St) € WHO(Sr), Q2(S1) € WH(S7) sets whose elements with fixed
t € (0,T) belong to the space Vi (J). The closures Q; (S7) and Q2(S7) in spaces W0(Sr)
and Wl(\STB denote by W (S7) and W(S7), respectively [3]. Clearly, u(z, t)|ag = 0 for

u(z,t) € Wyl (S7) or u(x,t) € W (S7). The space Wy°(Sr) is the state space Y (z,t) of

the Navier — Stokes system, W}(S7) is helper space. As above Yy(x) € VA(S), f(x,t) €
Lo ()", the scalar function p(z,t), characterizing quantitative changes of pressure, belong
to the class C(Sr).

Definition 2. A pair of functions

(Y@ pb): Yt e Wi Q). plat) € C(31) }

is called a weak solution of a differential system (1)—(6), if the function Y (x,t) satisfies
the integral identity

—fYa?T)d”(mT)dxdT—&—prYndT—i—ngYn)d
Sr (19)
—fYo dem—i—ffatT (x,T)d:EdT

St

for any n(z,t) € Wi(St) and n(z,T) = 0.

Remark 3. By virtue of Definition 2 for a function p(z,t) it is necessary that the
relation (grad p(z,t), n(z,7)) = 0 at any n(x,t) from W§(Sr). The latter is possible, for
example, when p(x,t) it belongs to the class C'(Sr). Note also that in many application
problems of continuum transport, the function p(z,t) refers to the input data, therefore
its existence not depend on the existence of the function Y (z,t) € Wy (Sr).

Further, using the obtained a priori estimates (17), (18) (statements of Theorem 1),
consider the issue of weak solvability of the differential system (1)—(6) [6] (see also [12,
p. 191]).

Theorem 2. Let the conditions Yo(z) € VI(S), f(z,t) € La1(ST)", then the initial
boundary value problem (1)—(6) is weakly solvable.

P r o o f. Let’s denote through Yk (x,t) piecewise constant interpolations by t:
Yi(z,t) =Y (k), t € (k=1)1, k7], k=1,2,..., K, Yk (2,0) = Yy(x). Here we proceed from
the existence of the solution {Y (k) € V}(S), k = 1,2, ..., K} (consequence of Theorem 1).
It is clear that ug (x,t) € Wy (S7) and satisfies the a priori estimates (17) and (18), then
for ug (x,t) a fair estimate

Y|l + 1 5| < O (20)

with an independent of 7 the constant C* > 0. A similar representation is set for the
function fr(x,t): fx(z,t) = f(x; k), t € (E—=1)7, k7], k=1,2,..., K. With an unlimited
increase K to infinity, we get a sequence {Yx(x,t)}, from wh1ch given (20), we select
the subsequence {Y (z,t)}, converging to Y (z,t) € Wy (S7). Let’s assume that Y (z,t)
is weak solution of the system (1)-(6). To do this, we will show what Y (x,t) satisfies
the identity (19) with arbitrary n(z,t) € C1(3T+T)", satisfying the conditions (3), (4)
under any t € (0,7) and for which n|ag, = 0, nlierr,r+-) = 0. By n(x,t) are defined
n(k): n(k) = n(z, k), k = 1,2,..., K, at the same time n(k)y = L[n(k + 1) — n(k)] (here
n(k)e, n(k): are right and left approximations % at the point ¢t = k7, respectively). By

Onk (@,t)  Onk(@,t)
at

T are formed

functions n(k) piecewise continuous approximations ng (z,t),
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, w by analogy with Yk (z,t), moreover g (z,t), 8"}57553”5),

on(=z,t) On(z,t)
ot

ox

for functions n(x,t), %

e @) yiformly converge on 7 to n(z,t),

nK(xat) =0,t¢€ [T7T+T]'
The identity (19) will be summed up by k from 1 to N, replaced n(z) by ™(x):

at K — oo, respectively;

-7 % JY (k)n(k)dzdt — fYon ydx + Vki (Y (k),n(k)) +
i N R =1 (21)
# 35 rolY 09, Y6 = 3% 7 [ £k

(here T Z Y(k)m(k) = -1 Z Y (k)n(k): =Y (0)n(1), n(N) =n(N+1) =0). The relation

(21), glven the representatlon 77K( t), takes the form

T
— [ Yr(x, t)nk (z, t)edzdt — [ Yo(z,t)nk(x, 7)dz +v [ p(Yi,nK)dt +
St . 3 0 (22)
+ [ o(Yk, Yk, nK)dt = f fre(x, )0k (z, t)dadt.
0

ST

Passing on to the limit in (22) by subsequence {Yi (,t)} (nx (z,t) replaced by ik (z, 1),
which corresponds to {Yi (z,t)}) taking into account Lemma 3, we obtain the identity (19)
for Y(x,t). This proves the weak solvability of the initial boundary value problem (diffe-
rential system) (1)—(6). It should also be noted, by virtue of comment 3, the continuous
dependence Y (z,t) on the input data Yy(z), f-(k). The theorem is proven.

4. The problem of optimal control. For the Navier — Stokes system two types of
optical control problems — distributed and start control are considered, which are most
meeting in applications and do not reduce the community of analysis. Everywhere below,
the control is indicated by the symbol v, the state of Y (x, t) of the Navier — Stokes system
is indicated by the Y'(z,t;v). In the case of distributed control v(z,t), the distributed
effect operator (this operator determines the density of external forces) is present on the
right side of equation (1) of the Navier — Stokes system:

—VAY—l—ZYaY—i—gradp f + Bu, (23)
in the case of start control v(x), the external effect is realized out by means of the initial
state of the Navier — Stokes system and determines the initial condition (5):

Y (z,t))i=0 = v(z), z €. (24)

Thus, for the Navier —Stokes system, the initial boundary value problem (23), (2)—(6)
determines the problem of optimal distributed control, the initial boundary value problem
(1)-(4), (24), (6) determines the problem of optimal start control. At the same time, in
both cases, the state of the Navier — Stokes system is monitored both at the domain S
(distributed observation), and & at o € (0,7") (observation at a fixed point in time) or
at t = T (final observation). Other types of observations are also possible, for example,
at the boundary 937 or part of it (boundary observation). The physical task is to bring
the dynamic characteristics of the viscous fluid (velocity, convective component values) to
preassigned levels at an interval (0,7") or by a point in time ¢ = ¢y € (0, T7.
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The definition of a weak solution of the system (23), (2)—(6) or (1)—(4), (24), (6)
exactly repeats the Definition 2 with the only difference that for the system (23), (2)—(6)
the right part (19) changes to

fYO n(z,0)dx + f (x,7) + Bu(z,t))n(x, 7)dzdr,

S
and for the system (1)—(4), (24) the right part (19) changes to
fv a?de—i—ffa:T n(z, 7)dzdr.

St

)

According to what has been said Y (z,t) replaced on Y (v) := Y(z,t;v) or on Y;(v) :=
Y(x,t;v) (Yr(v) =Y (x,T;v)), the latter for the convenience of presenting the results.
To assess the state Y (z,t;v) of the Navier — Stokes system, we introduce the space
of controls U and linear continuous observation operators Cy : Lo(S7)” — H (¢ = 1,2),
where H is the observation space: H = Lo(S7)" in the case of distributed observation and
in the case of final observation H = L(3)". In addition C1Y (v) = DYr(v), here operator
D H — H is the linear bounded operator, CoY (v) = Yr(v), Yi(v) = Y(z,t;v) :=

o
zl Vi, t;v) Gt
&

Let’s set the functional J(v) on a closed convex set Uy C U:

J() = |C1Y (v) = @3 + [C2Y (v) = ¥} = Ji(v) + a(v), (25)
where J; (v) = | DYy (v)—®||%, J2(v) = HYT( )—¥||% and ®, ¥ are preassigned functions:
in the case of distributed observation ® := ®(x,t),V := U(x,t) € H = Lo(S7)", for

the case of final observation ® := ®(x), ¥ := ¥(z) € H = Ly(J)". In applications, the
functional Ji (v) establishes the difference between the characteristics of the velocity vector
of the hydraulic flow from the defined ®, the functional Jy(v) characterizes the difference
between the convective change in the velocity vector and the defined V.

Definition 3. The problem of optimal distributed or start control of the Navier —
Stokes system (23), (2)—(5) or (1)—(4), (24) is to find 1)ien[i} J(v). Optimal controlu € Uy of

the system will be called the minimizing element of the functional J(v): J(u) = in(g J(v).
veUs

In the future, we will assume the existence of optimal control of the Navier — Stokes
system. We will prove the auxiliary statements beforehand.
Lemma 4. Let u,v € Uy and 0 € (0,1). The following relations are valid:

Yi(u) (v —u) = Yi(v) — Yi(u), Yi(w)(v—u)=Yi(v) - Yi(u), (26)

here the symbol “'” denotes Frechet derivative by control v of function Yi(v) and Yy (v).

P r o o f. Let’s reason for the case of distributed control v(x,t), similar reasoning is
true in the case of start control. Proceeding from the integral identity of the definition of
the weak solution of the system (23), (2)—(6) and taking into account the relations

p(Ye(v),n) — p(Ye(u),m) = >0 [ OH0a Oy 5o O Os gy —

5,J=1g 4,j=1g

:p(yt(u) = Yi(u), ),

o(Yi(0), Yi(v),m)—o(Ye(w), Ye(w),m) =3 [ YVi(0)e e dn—3" [ ¥y(u) Z2elden,dr

6:Ck
_],k 13 7,k=1
= 3(Y(v) = Y(u),m)
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(here g(Y (w) > [Yi(w)k Milwlip . w = v or w = u) for any u,v € Up and

Oz
]) =1 R
arbitrary function n(x,t) € Wi(Sr), we come to integral identities for arbitrary n(z,t) €
Wo (Sr):

T T ~
J (Ye(w) = Yiw) P dadt + v [ p(Yi(v) = Yalw), mdt + [ (Y (v) =¥ (u),mdt =
T

= Of(B(U - U)a’?)dt7

(Vi 00 = ) = Yi(u) 2520t -+  p(Yi(u+ 000 — ) = ¥iu) ) +

St

+ f@(f/(u +0(v—u)) —Y(u),n)dt =0 ({T(B(U —u),n)dt.

Y (u6(v—

If there are limits lim ‘("+9(“_0"))_)/’(") lim v Qu))_?(“), then there are derivatives

6—0 6—0
of Frechet Yi(u)’, Y( )’, respectively. After dividing the second integral identity by 6 and
calculating the limit at 6 — 0, we obtain the relations (26) after comparing the left parts
of these identities. The lemma is proven.

Lemma 5. Let u € Uy be the minimizing element of the functional J(v) then

Jw)(v—u) =0 (27)

for any v € Up.
P r oo f Since u € Uy it is a minimizing element of the functional J(v), then
J(u) = ing J(v). With any v € Uy and 6 € (0,1) element (1 — 0)u + 0v € Uy due to the
veUs

convexity of Uy, and therefore,
J(u) < J((1 = 0)u + ) = J(u+ (v - u))

and then

When 6 — 0 we get the inequality (27), the lemma is proven.
Next, consider the problems of optimal control of the Navier — Stokes system (1), (2).
Distributed control. The Navier — Stokes system witch distributed control is of the
form (23), (2)—(4). Its state {Y (v)(z,t),p(v)(z,t)} is determined by a weak solution of
the initial boundary value problem (23), (2)—(6), for which the integral identity takes the
form
T T
— [ Y(a.t; U)Mdmdt + Z/fp(}/, n)dt + f oYY, n)dt =
St 28
= [Yo(x)n(z,0)dz + f t) + Bu(z, t)) (z,t)dxdt. @)

Minimizing functional J(v) with distributed observation operators Cy, Cy (H = L2(S7))
has the form (25), control v € U = Lo(S7).

Theorem 3. Let u(x,t) is the optimal control of the system (23), (2)—(4), then the
state function Y (u)(x,t) of this system satisfies the identity (28) under v(x,t) = u(z,t)
for any element n(x,t) € Wi(S7), n(z,T) = 0, and the inequality
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(DYi(u) — @, D (Yy(v) = Yi(w))) + (Yi(u) — ¥, Yy(v) = Yy(u)) g >0 (29)

for any v(z,t) € Uy; function p(x,t) is arbitrary element of class C(S).
P r o o f. Since u(x,t) is the optimal control, it is a minimizing element of
the functional J(v): J(u) = ing J(v). By virtue of the statement of Lemma 5,
veUs

inequality (27) is true. Based on (25), J(v) it is presented in the following form

7)
(Pt = St 2t

J(v) = (lZY(a:,t;U) - @(m,t),NDY(x,t;v) — O(z,t)) g +
+ (Y (x,t;v) — ¥(z,t), Y(x,t;v) — ¥(z,t) g

and, given the inequalities (26) of Lemma 4, we come to inequality

LJ(u)' (v —u) = (DY;(w) — ®, D(Y;(v) — Yy(u))); +
+ (Yi(u) — W, Yi(v) — Yy(u))gr >0

and get inequality (29). The relation (28) (at v(x,t) = u(x,t)) for any n(x,t) € W(Sr)
(n(z,T) = 0) is the integral identity of the initial boundary value problem (23), (2)—(5).
By virtue of Remark 4, the function p(x,t) is arbitrary element from C(S7). The theorem
is proven.

It should be noted that the control effect on the Navier —Stokes system (1)—(4)
in a finite number of fixed points of the domain & (point control) is a variant of dis-
tributed control [2]. For example, such points xz; may belong to the surfaces S; of the

M
nodal sites w;, j = 1,2,...,M. Then in the ratio (1) f(z,t) = > v;(t) ® é(z — z;),
j=1
v(t) = {v1(t),va(t), ..., var(t)} € Lo(0,T)M. In this case, the state Y (v) := Y (z,t;v) of
the system (1)—(4) is an element W} (Sr) and for Y (z,t;v) fair identity

T T
— [ Y, t;0) 28D drdt + v [ p(Y, m)dt + fg(Y, Y, n)dt =
S 0

mT
= [Yo(x) dex+ffxt n(@,t)dzdt + 35 [v;(t)n(z;,t)dt
8 j=10

ST

for any n(z,t) € Wi(Sr), n(z,T) = 0. Further reasoning is similar to the above.

Starting control. Consider the problem of optimal starting control of the Navier —
Stokes system (1)—(4) with a control effect v(z) € U = Lo(%)", that determines the initial
condition (24). The pair {Y (v)(x,t),p(x,t)} is a weak solution of the initial boundary
value problem (1)-(4), (24), (6), p(z,t) € C(Sr), the function Y (v)(x,t) satisfies the
integral identity

T T
- f Y(a:,t;v)mdxdt+ pr(Y, n)dt + [o(Y,Y,n)dt =
Sr 0 (30)
= [ a:Od:c+ffxt n(z,t)dzdt
Ry \ST
for any n(x,t) € Wi(St), n(z,T) = 0, and p(z,t) is an arbitrary element of C(Sr).
Minimizing functional J(v) has the form (25), v(z) € U = H = Lo(3)".
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Theorem 4. Let u is the optimal control of the system (1)—(4), then the state
Y (u)(x,t) of this system satisfies the identity (30), where v(z) replaced by u(x), and the
inequality

(DYi(u) = @, D (Yy(v) = Yo(u)) g + (Ye(u) = ¥, Yi(v) = Yi(u))nr >0

for any v(z) € Ug = U. The function p(u)(z,t), like above, belongs to space C(ST).

The proof of the statement of the theorem repeats verbatim the proof of Theorem 3,
since the representation of the minimizing functional J(v) does not change.

Remark 4. Statements of Theorems 3 and 4 are necessary conditions for the existence
of optimal distributed and starting controls. For a linearized Navier — Stokes system

%—};—VAY—&—gradp:f

the necessary and sufficient conditions for optimal control can be established using a
conjugate system to this one.

5. Conclusion. The study of the problem of optimal distributed and starting control
of the Navier — Stokes evolutionary differential system is considered in the Sobolev spaces
of functions with carriers in the network-like region of the n-dimensional Euclidean space
(n > 2 ). The paper presents the results of two main areas of research: obtaining conditions
of weak solvability of the initial boundary problem for the Navier — Stokes system; the
formation and solution of optimal control problems of the Navier — Stokes system. When
analyzing the weak solvability of the initial boundary-boundary problem, it is reduced
to the differential-difference system and the construction of a priori estimates for weak
solutions of this system is carried out. Based on the Galerkin method with a special
basis, an algorithm is formed for the actual construction of a weak solution to the initial
boundary problem for the Navier — Stokes system. The obtained results are effectively used
in the analysis of optimal control problems not only for network hydrodynamic processes,
but also for the analysis of inverse problems of mathematical physics, the problems of
determining the minimax of controlled systems, stability and stabilization of mechanical
systems [13-17].
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OnTumMmasibHOe ynpasJiienue cucremoii HaBbe — CToKca ¢ ITpocTpaHCTBEHHOM
IIepeMeHHOI1 B ceTenosobHoi1 obsracTu
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Hns uurupoBauusi: Zhabko A. P., Provotorov V. V., Sergeev S. M. Optimal control of the
Navier — Stokes system with a space variable in a network-like domain // Becruuk Cankr-
Ilerepbyprckoro ynuepcurera. [Ipukiajgnas maremaruka. Nuadopmaruka. [Ipomneccor yrpaie-
mus. 2023. T. 19. Bem. 4. C. 549-562. https://doi.org/10.21638/11701/spbul0.2023.411

IIpoBeseno mccnemoBanne 3a/a9u ONTUMAJILHOIO YIIPABJIEHUs 9BOJIIONMOHHON TuddepeH-
nmranbHOit cucrtemoii Hasbe — Crokca, paccmarpuBaemoit B mpocrpanctBax Cobosesa, dite-
MEHTBI KOTOPBIX — 3TO (DYHKIIMU C HOCUTE/ISIMH B N-MEPHOM cererofobHoi obsactu. Takas
006J1aCTh COCTOUT M3 KOHEYHOT'O JYHCJIa IOJ00/IacTell, B3ANMHO IPUMBIKAIOIINX OIIPEIEICHHDI-
MU YaCTSIMU IIOBEPXHOCTEH CBOUX I'paHull 1o tuity rpada. st dyHKIuil, sSiBIISIONIXCS Jte-
MEHTaMH YKa3aHHBIX IIPOCTPAHCTB, IIPEJCTABIEHBI YCIOBUS CYIIECTBOBAHUS CJIEJIOB Ha I10-
BEPXHOCTSIX IPUMBIKAHIS 1 PACCMOTDEHBI YCJIOBHSI IPUMBIKAHUS I0700J1acTeil, KOTOPBIM 3TH
byHKIMN yI0BIETBOPAIOT. B npukIagaeix BOIPOcax aHajIu3a IPOIECCOB IIEPEHOCA CILIOMNI-
HBIX CPeJl YCJIOBHS IPUMBIKAHUS OIMCHIBAIOT 3aKOHOMEPHOCTH IIPOTEKAHUS IIOTOKOB YKUJKO-
cTeil Yepe3 IpaHuIlbl IPUMBIKAIOMNX To100acTeil. [IpuBeseHbl pe3yIbTaTsl ABYX OCHOBHBIX
BOIIPOCOB HCCJIEZIOBAHUS: cyiabasi pa3pelnMoCTh HAYAJIbHO-KPAeBON 3a/a49n JIJIsi CUCTEMBI
Haspe — CroKca U oIy 4eHne yCJIOBHI CYIIeCTBOBAHUS C1ab0r0o pelleHns 3Toi 3a1a4u; dhop-
MUPOBAHNE ¥ DEIICHHE 33/1a9 ONTUMAJILHOIO YIPABIEHHUsI pa3Horo tumna cucremoir HaBbe —
Crokca. OCHOBOIIOIATAOIIIM IIO/IX0I0M aHAJIN3a CJIa00I Pa3perImMOCTH HAdaJIbHO-KPAaeBOil
331440 SIBJISAETC peayKuus ee K JuddepeHIagbHO-PA3HOCTHON (IO JUCKPETH3AIUST UC-
XOJHOM CHCTEMBI TI0 BPEMEHHOH MEPEMEHHOM) M MOCIEIYIOee NCIOIb30BAHNE ATIPUOPHBIX
OILIEHOK JIJIsE CJIA0BIX PEIIeHUil IOJIyYeHHbIX KPAaeBbIX 3aJad. Takue OIEeHKHU HCIIOJIb3YIOTCs
IS JIOKA3aTeIbCTBA TEOPEMBI CYIIIECTBOBAHUS CJIA00I0 PEIIEHIs HCXOAHOI JuddepeHIuaib-
HO CHCTEMBI U yKa3bIBAIOT IIyTh (haKTUIECKOTO IIOCTPOEHUsI 3TOro pemenus. IIpencrasien
VHHBEPCAJIBHBIA IOAXO] K PENIEHNIO 33[a4 OITUMAJIBHOIO DACIPEIEJEHHOTO M CTapTOBOIO
yIpaBJIeHns 9BOOIMOHHOIT cucremoit HaBbe — Crokca. ITocientee cyrecTBeHHO pacIupsier
BO3MO>KHOCTH aHAJIN3a HECTAIMOHAPHDBIX CETENOM00HBIX IPOIECCOB IPUKJIAHON TUAPOIMHA-
MUKH (HAIIPIMED, MPOIECCOB TPAHCIOPTUPOBKU PA3HOIO THUIIA YKUJKOCTEH 110 CETEBBIM HJIU
MarucTpajbHbIM TPYGOIPOBOAAM) M ONTHMAJIBLHOIO YIPABICHUS STUMY IPOLECCAMHE.

Kmoueswvie caosa: muddepeHnaabHO-pa3HOCTHAS CHCTEMA, BOJIIOIMOHHAasT cucTtema Ha-
Bbe — CTOKCa, cerernoobHasi 06J1acTh, PA3PENINMOCTh, ONTUMAJILHOE YIIPDABJICHHE.
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