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This paper investigates the issue of pollution control dynamic games defined over a finite time
horizon, with a particular focus on parameter uncertainty within the ecosystem. We employ
a dynamic Bayesian learning method to estimate uncertain parameters in the dynamic
equation, differing from traditional single-instance Bayesian learning which does not involve
continuous signal reception and belief updating. Our study validates the effectiveness of
the dynamic Bayesian learning approach, demonstrating that, over time, the beliefs of the
players progressively converge towards the true values of the unknown parameters. Through
numerical simulations, we illustrate the convergence process of beliefs and compare optimal
control strategies under different scenarios. The findings of this paper offer a new perspective
for understanding and addressing the uncertainties in pollution control problems.

Keywords: dynamic Bayesian learning, pollution control games, ecological uncertainty, opti-
mal control strategy.

1. Introduction. The corpus of literature on dynamic game models with unknown
parameters, specifically within the realm of pollution control games, has expanded conside-
rably. At the beginning of the nineties, several papers formulated a deterministic growth of
pollution stocks [1–4]. The introduction of uncertainty into these models was pioneered by
[5–8], which examined a dynamic game of international pollution control under ecological
uncertainty and integrated a learning mechanism for the players. This approach allowed
for the characterization and comparison of non-cooperative emission strategies in response
to incomplete knowledge about the distribution of ecological uncertainty.

Paper [9] delved into learning within the context of a resource extraction and invest-
ment game, acknowledging that agents grapple with uncertainties in both the dynamics
of the environment and their payoff functions. While most of the literature has focused
on scenarios where parties have incomplete knowledge of others’ private information, the
work [10] considered the strategic implications of a player’s partial knowledge of the truth.
This body of work collectively enhances our understanding of strategic behavior in the face
of uncertainty in dynamic environmental games.

Bayesian updating is a pivotal method for addressing uncertainties regarding un-
known parameters within dynamic systems. This method has been previously utilized to
investigate decision-making processes involving binary choices. Specifically, the Continuous
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Opinions and Discrete Actions (CODA) model, introduced by Martins, provides a frame-
work where each choice is linked to a continuous probability, bridging the gap between
continuous beliefs and discrete actions [11, 12]. In this model, agents maintain continuous
opinions and base their decisions on the discrete actions observed from their peers.

Further expanding on this concept [13–15], explored the dynamics of agents’ opinions
concerning an unknown parameter. Agents would form and adjust their opinions con-
tinuously, while also considering the likelihood of different values, which could follow a
distribution that combines Gaussian and uniform characteristics. This dual-distribution
approach encapsulates the possibility of agents operating under partial ignorance during
interactions.

Building upon the foundational work in Bayesian updating and its applications in
dynamic systems, our research explores new dimensions in environmental economics and
game theory. We focus on how players form and adjust their beliefs in the face of ecological
uncertainties, and how these beliefs, in turn, guide their strategies in a dynamic setting. We
extend our inquiry to the long-term effects of belief-driven strategies on the stability of the
system and the achievement of optimal outcomes. The research questions whether a belief-
centric approach leads to more efficient decision-making or whether it potentially limits
adaptability and innovation in response to environmental challenges. Through a blend of
theoretical exploration and empirical analysis, our paper aims to deepen the understanding
of the role of beliefs in shaping strategies within dynamic, uncertain environments.

2. Description of the problem. We focus on tracking the cumulative net emissions
in the environment, represented as a function of time S(t). The dynamics of this stock
variable are crucial for understanding the environmental impact and are formulated as
follows [5]:

S(t+ 1) = η̃

(
N∑

i=1

ui(t) + δS(t)

)
, S(t0) = S0, (1)

where 0 < δ < 1 indicates that 1 − δ is the natural decay rate of pollution. The variable
η̃ introduces ecological uncertainty into our model, accounting for various factors that
significantly influence the environmental dynamics.

A pivotal aspect of our model is the incorporation of uncertainty, represented by η̃
in the dynamic equation. This uncertainty factor is integral to the environmental model,
capturing the unpredictable elements that typically affect ecological systems. The variable
η̃ is not just a mathematical construct but a reflection of real-world phenomena like climatic
variations, unanticipated ecological responses, and other environmental stochasticities. It
serves to model the often erratic and non-linear impact of emissions on the environment,
thereby adding a layer of realism to the simulation. Understanding and quantifying this
uncertainty is crucial for accurate modeling and effective decision-making in environmental
management.

The realization of the random variable η̃, denoted by x, follows a probability dis-
tribution ϕ (x|θ). Here, θ in the parameter space Θ ⊂ R

l defines the vector of sufficient
parameters for the probability density function (p.d.f.) ϕ.

Players form their beliefs about the unknown parameter ξ(θ), particularly crucial in
contexts laden with uncertainty, like environmental issues. This uncertainty may represent
factors such as the rate at which nature absorbs pollutants.

The optimization problem for player i = 1, 2, ..., N , assuming a behavior of welfare
maximization over a finite horizon, is given by
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max
ui(t)

T∑

t=0

[ui(t)(ai − ui(t))− biS(t)], (2)

subject to the pollution dynamics described in equation (1). In formula (2), ai, i =
1, 2, ..., N, are constants, and bi for each, i = 1, 2, ..., N , denotes the positive marginal
cost of the pollution stock.

3. Dynamic Bayesian learning method. In this chapter, we delve into the strate-
gies players employ for updating their beliefs in the face of uncertainty within the state
equation. Such uncertainty might stem from variables like unknown parameters or er-
ratic environmental factors. Grasping the nuances of belief revision in response to new
information and observations is pivotal.

We initiate our discussion by outlining the conditional expectation method, which is
used to predict the realization of a random variable at time t, denoted as xt. We will then
explore how players incorporate fresh signals into their decision-making, thereby enhancing
the accuracy of their estimations.

In this Section, we analyze how the planner employs Bayesian methods to interpret
and learn from the signal xt observed at each time t. To streamline our model, we stan-
dardize the initial beliefs of all players. The following assumptions are made for simplicity
and clarity: at the beginning of each stage, players collectively adopt a prior belief ξt(θ),
which is recognized as common knowledge among them. Players make their decisions with-
out the knowledge of the current period’s signal; the signal is observed only post-decision.
This information is then utilized to update their beliefs about θ. In each stage, players use
mathematical expectation to estimate the unknown parameter θ. The estimated value at
stage t, denoted as θt.

Formally, given the prior belief ξt(θ) and the signal xt at time t, the posterior belief

ξ̂t(θ|xt) is defined by the following equation:

ξ̂t(θ|xt) =
ϕ(xt|θ)ξt(θ)∫

Θ
ϕ(xt|y)ξt(y)dy

(3)

for θ ∈ Θ. This formulation, based on Bayes’ inference, describes the learning process
through the continual updating of beliefs in light of the insights derived from each observed
signal xt. Significantly, equation (3) functions independently of the control vector.

In the context of sequential decision-making, dynamic games of incomplete informa-
tion are characterized by the uncertainty and evolving nature of the environment in which
players operate. Players are required to make strategic decisions based on limited infor-
mation, aiming to maximize their expected payoffs over time. The fundamental principles
governing their behavior and decision-making process can be described as follows:

a) at each time t = 0, 1, 2, . . . , T , players do not know xt, xt+1, . . . , xT , when choosing
their strategies ui(t);

b) they aim to maximize their payoff from time t to T , which depends on future states;
c) players use their prior beliefs ξt(θ) about unknown parameters based on informa-

tion available up to time t, which are based on the information accessible up to time t
(i.e., x0, . . . , xt−1), in order to estimate the unknown parameters. They then apply this
estimation as the actual value of η̃ starting from time t;

d) upon receiving the signal xt, players update their belief to the posterior belief

ξ̂t(θ|xt), which is assigned as the prior belief at time t+ 1.
Proposition. At any stage t, the posterior belief about an unknown parameter θ

aligns with the prior distribution for the next stage t+1. This proposition underscores the
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consistency and progression in belief formation, ensuring a seamless transfer of knowledge
from one stage to the next.

At the outset of each stage, players establish a prior belief regarding the unknown
parameters. This belief, coupled with the current state, guides them in selecting an optimal
strategy. Following this decision, players are presented with signals that provide insights
into these parameters. Utilizing the information from these signals, they update their
initial belief to a posterior belief. This updated belief then serves as the new prior for
the subsequent stage, setting the stage for the next cycle of decision-making. This process
repeats itself, creating a dynamic, iterative game, where Bayesian learning plays a central
role in strategy adaptation and decision-making.

4. Theoretical analysis. At the start of each stage, players assign prior beliefs to
the unknown parameters θ. These beliefs are based on normal-gamma conjugate priors
and are represented as follows:

ξt(θ)
def
= N

(
µ | µt, (ktλ)

−1
)
G (λ | αt, rate = βt) ,

where G denotes the gamma distribution, N is the normal distribution.
Using equation (3) of Bayes’ inference, the posterior distribution of unknown para-

meters θ can be updated as

ξ̂t(θ|xt) ∝ϕ(xt|µ, λ)ξt(θ) ∝

∝ N
(
µ | ktµt + xt

kt + 1
, ((kt + 1)λ)−1

)
× G

(
λ | αt +

1

2
, βt +

kt (xt − µt)
2

2 (kt + 1)

)
. (4)

Applying Proposition and exploit the property that the distribution is conjugate, we
get the following formula:

µt+1 =
ktµt + xt
kt + 1

,

kt+1 = kt + 1,

αt+1 = αt +
1

2
, (5)

βt+1 = βt +
kt (xt − µt)

2

2 (kt + 1)
,

here t ∈ {0, 1, 2, ..., T − 1}, given the initial beliefs µ0, k0, α0, and β0. The left-hand side of
equation (5) represents the players’ initial beliefs for stage t + 1, whereas the right-hand
side of equation (5) is linked to equation (4) based on Proposition.

As we delve deeper into the implications of our Bayesian learning model, it becomes
essential to establish the theoretical underpinnings that guarantee its effectiveness over
time. A key aspect of this is the convergence of the Bayesian estimator, which we address
in the following theorem. This theorem demonstrates that the iterative Bayesian learning
process leads to a convergence of the estimated mean towards the true mean as the number
of stages increases indefinitely.

Theorem. As the number of stages progresses to infinity, the expected value of the
Bayesian estimator for the unknown mean converges to the true value of the parameter.
Formally,

lim
n→∞

E(Mn) = µ,
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where Mn is a random variable representing the Bayesian estimate of the unknown mean
µ at stage n.

P r o o f. In our model, the sequence X0, X1, . . . represents an infinite series of in-
dependent and identically distributed (i.i.d.) Lebesgue integrable random variables. Each
variable in this sequence has an expected value denoted as E(Xi) = µ, which is constant
across the series.

Considering the Bayesian estimator Mn for the unknown mean at stage n, we have

E (Mn) =
k0µ0

k0 + n
+

1

k0 + n

n−1∑

i=0

E(Xi) =
k0µ0

k0 + n
+

nµ

k0 + n
=

k0µ0

n + µ
k0

n + 1
. (6)

Taking the limit of equation (6) as n approaches infinity, we find

lim
n→∞

E (Mn) =
0 + µ

0 + 1
= µ.

This result demonstrates that the expected value of the Bayesian estimator Mn con-
verges to the true mean µ as n becomes infinitely large. Therefore, the theorem is proved.

�

The aforementioned theorem has profound implications for our dynamic game model.
It validates the approach of using Bayesian learning mechanisms with evolving uncertain-
ties. The convergence of the Bayesian estimator to the true parameter value as the number
of stages increases provides a solid foundation for decision-making in uncertain environ-
ments. This theoretical assurance of convergence is not just mathematically significant;
it also instills confidence in the practical application of our model, especially in complex,
real-world scenarios where long-term strategy and adaptability are crucial.

Having estimated the unknown parameters in our dynamic game of pollution con-
trol, we now turn our attention to identifying the Nash equilibrium of the model. This
equilibrium represents a state, where no player can benefit by changing their strategy
while others keep theirs unchanged. To find this equilibrium, we employ the Hamilton —
Jacobi — Bellman method, a powerful tool in dynamic optimization.

The Hamilton — Jacobi — Bellman equation for each player in our pollution control
model is central to identifying the Nash equilibrium strategies. We denote the value func-
tion of player i as Vi(t, S, µt, kt, αt, βt), which represents the player’s maximum expected
utility at a given state. This equation for this value function is expressed as

Vi(t, S, µt, kt, αt, βt) = max
ui(t)

{(ui(t)(ai − ui(t)) − biS)+

+Vi(t+ 1, η̂t(
N∑

i=1

ui(t) + δS), µt, kt, αt, βt)},

where η̂t = E(η̃|µt, αt/βt).
Assuming a linear-state structure for our model, the value function is hypothesized

to be linear and is formulated as

Vi(t, S, µt, kt, αt, βt) = Ai(t, µt, kt, αt, βt)S +Bi(t, µt, kt, αt, βt),

i = 1, 2, ..., N.

To derive the coefficients of the value function, we equate the coefficients in terms
of S:
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Ai(t, µt, kt, αt, βt) = −bi +Ai(t, µt, kt, αt, βt)η̂tδ,

Ai(T + 1, µt, kt, αt, βt) = 0

for t ∈ {0, 1, ..., T }, i = 1, 2, ..., N .
We then define the Nash equilibrium strategies with dynamic Bayesian learning for

each player i = 1, 2, ..., N in the subgame:

ũ∗i (t, µt, kt, αt, βt) =
ai
2

− η̂t
2(1− η̂tδ)

bi(1− (η̂tδ)
T−t),

where a =
∑N

i=1 ai; b =
∑N

i=1 bi; t ∈ {0, 1, ..., T }.
5. Numerical simulation and results analysis. We present the results of our

numerical simulations designed to demonstrate the effectiveness of our dynamic Bayesian
learning approach in the context of ecological uncertainty. The signals we generate follow
a normal distribution with a mean of 0.5 and a variance of 1, thus the true value of the
unknown parameter regarding the mean of the random variable is 0.5. The parameters of
the model are set as a = 8, b = 3, N = 5, and δ = 0.6. The time interval considered is
T = 70.
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Figure 1. Received signals in estimating ecological uncertainty

Figure 1 illustrates the dynamic nature of signal reception in the context of ecolo-
gical uncertainty estimation. It highlights how varying data inputs, represented through
different signal types, contribute to the evolving understanding of ecological systems.

Upon analyzing Figure 2, we observe a significant trend: as time progresses, the play-
ers’ estimates of the unknown parameter increasingly converge to the true value, which
in this case is 0.5. This convergence is a clear indication of the effectiveness of dynamic
Bayesian learning in reducing uncertainty and enhancing the accuracy of parameter es-
timation. The simulation thus validates our model’s capability to adaptively learn and
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Figure 2. Dynamic Bayesian estimation of unknown parameters over time

Figure 3. Comparison of optimal control strategies with and without ecological uncertainty

refine estimates, ultimately leading to more informed and precise decision-making in the
face of ecological uncertainty.

Figure 3 presents a comparison between the optimal control strategies adopted by
players under different conditions of ecological uncertainty. When ecological uncertainty
is absent, the control strategy adopted by players is markedly more stable.This line rep-
resents the benchmark control action, assuming the players have complete knowledge of
the ecological parameters. On the other hand, the blue dots depict the control strategy
under ecological uncertainty, where players must continuously adapt their actions based
on the signals they receive. The scattered nature of these points highlights the variability
and dynamism in the players’ control strategies as they attempt to estimate and account
for ecological uncertainty.
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6. Conclusion. This study has provided a comprehensive examination of dynamic
Bayesian learning in the context of ecological uncertainty within pollution control games.
Through a series of detailed numerical simulations, we have demonstrated the significant
impact of uncertainty on players’ decision-making processes. Our results show that as
players receive signals over time, their estimates of unknown ecological parameters con-
verge to the true values, allowing for more informed and optimal control strategies.

The simulation analysis reveals that the presence of ecological uncertainty necessitates
a dynamic approach to control. Players must adapt their strategies in real-time, based on
the evolving signals they receive, which capture the uncertain state of the ecological system.
This adaptability is crucial for managing environmental challenges effectively, especially
when long-term outcomes are uncertain.
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Динамическое принятие решений в условиях неопределенности:
байесовское обучение в теории экологических игр∗
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Для цитирования: Zhou J., Petrosian O. L., Gao H. Dynamic decision-making under un-
certainty: Bayesian learning in environmental game theory // Вестник Санкт-Петербургского
университета. Прикладная математика. Информатика. Процессы управления. 2024. Т. 20.
Вып. 2. С. 289–297. https://doi.org/10.21638/spbu10.2024.213

Исследуется проблема динамических игр по борьбе с загрязнением, определенных на ко-
нечном временном горизонте, с особым акцентом на неопределенность параметров внут-
ри экосистемы. Используется динамический байесовский метод обучения для оценки
неопределенных параметров в динамическом уравнении, отличающийся от традицион-
ного байесовского обучения на единичных примерах, которое не предполагает непре-
рывного приема сигнала и обновления представлений. Проведенное исследование под-
тверждает эффективность динамического байесовского подхода к обучению, демон-
стрируя, что со временем убеждения игроков постепенно приближаются к истинным
значениям неизвестных параметров. С помощью численного моделирования иллюстри-
руется процесс конвергенции убеждений, сравниваются стратегии оптимального управ-
ления в различных сценариях и анализируется влияние сигналов на управленческие
решения участников. Результаты статьи открывают новую перспективу для понимания
и устранения неопределенностей в задачах борьбы с загрязнением.

Ключевые слова: динамическое байесовское обучение, игры по борьбе с загрязнением
окружающей среды, экологическая неопределенность, стратегия оптимального управ-
ления.
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