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In this paper, a differential game with pairwise interaction in a network is proposed. For
explicitly, the vertices are players, and the edges are connections between them. Meanwhile,
we consider the cooperative case. One special characteristic function is introduced and its
convexity is proved. The core is used as a cooperative optimality principle. The characteristic
function allows the construction of a time-consistent (dynamically stable) solutions, such as
the Shapley value and the core. Finally, the results are illustrated by an example.
Keywords: cooperative games, differential network games, pairwise interactions, characteristic
function, the Shapley value, time-consistency.

1. Introduction. The pairwise interaction games are new and important part of
modern game theory. The first study on pairwise interaction in non-cooperative cases in
network structure is done in [1]. In other words, the pairwise interaction games are proper
subclass of the usual graphical or network game [2]. In the case of two strategies, pairwise
interaction games on the complete graph can be modeled as congestion games [3].

To the best of the author’s knowledge, the research related to cooperative games with
pairwise interaction is done in [4-8|. For the first time, in a cooperative form, a multi-
stage network game with pairwise interaction is considered, when players play bimatrix
games with their neighbors by network structure, and sufficient conditions for strong time
consistency of the core are formulated [4]. Also, in [5], for a particular class of symmetric
networks (star-network), a simplified formula for calculating the components of the Shap-
ley value is obtained, and conditions for strong time consistency of the core are derived.
In [6], considering multistage cooperative games with pairwise interaction, an analogue of
the core is constructed and its strong time consistency proved. Furthermore, alternative
approaches to constructing the characteristic function for games with pairwise interaction
are considered [7]. And a new characteristic function is constructed, which has a lower
computational complexity than the classical one, the IDP-core is proposed and its strong
time consistency proved [§].

Since that most real-life game situations are dynamic rather than static, network
differential games have become a field that attracts theoretical and technical developments
[9-11]. We developed differential game models for studying congested traffic networks
[12]. Cooperative differential games on networks are developed in [13]. A time-consistent
Shapley value and 7 value solution in a class of differential network games was proposed in
[13]. Later, Tur and Petrosyan give a simplified formula for the calculation of the Shapley
value [14]. Additionally, they also proved that the core is strongly time-consistent [15]. In
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cooperative differential game theory, it is important for the solution to be dynamically
stable (time-consistent), meaning that players have no intention to break the rules. The
notion of time consistency of differential game solutions was first introduced in [16, 17].
The cooperative game model is based on the characteristic function, and in [18], a new
the characteristic function was introduced for cooperative differential games on networks.

In the paper, we consider a new class of games which is a subclass of differential net-
work games namely differential games with pairwise interactions. For this class of games,
we prove the convexity of the introduced characteristic function which is not true in ge-
neral and guarantees that the Shapley value belongs to the core. In addition, the Shapley
value is time-consistent which is an exception in differential and dynamic cooperative game
theory. The theory is illustrated on nontrivial three person differential pollution control
game with pairwise interactions. The results of numerical simulation are also presented in
this case.

The rest of the paper is organized as follows. In Section 2 a class of differential network
games with pairwise interaction is described. In Section 3 a special characteristic functions
is introduced. In Section 4 the core and the Shapley value for the considered class of games
are introduced. In Section 5 one illustrative example, with different differential games on
the various links of the network is considered. In Section 6 the conclusions are drawn.

2. A class of differential network games with pairwise interaction. Consider a
class of n-person differential network games with pairwise interaction over the time horizon
[to, T]. The players are connected to a network system. Let N = {1,2,...,n} denote the
set of players in the network. The nodes of the network are used to represent the players
in the network.

A pair (N, L) is called a network, where N is a set of nodes, and L C N x N is a
given set of arcs. Note that the pair arc(i,4) ¢ L. If pair arc(i, j) € L, denote link as i < j
connects players ¢ and j, j € K (7). It is supposed that all connections are undirected. We
also denote the set of players connected to player i as I?(z) =[j:arc(i,j) € L], for i € N,
i#j, K(i) = K(i) Ui.

The state dynamics of the game are given by

() = 19V ()0 (), 0 (1), 2 (1) = (1

for 7 € [to;T] and i € N, j € K(i).

Here (1) € R™ is the state variable of player i interacting with player j € K (i) at
time 7, and u% () € U;;, U;; C CompR!, the control variable of player i interacting with
player j. Every player i plays a differential game with player j according to the network
structure. The function f¥(z%(7),u" (7),u’*(7)) is continuously differentiable in 2% (7),
u(7) and w9 (7).

Define the payoff of each player ¢ at each link or arci < j by

T
K (o, T = t0) = [ W (), (7))
to

Because player i plays multiple different differential games, the dynamic equation contains
the player i’s control and the control of his neighbor who plays the differential game with
him. The payoff function of player 7 is not only dependent upon his control variable, which
is from the control set u’(t) = (u%(t),j € K(i)), and trajectories 2*(t) = (2% (t),j € K(i))
but also depend on the control variables of his neighbor, which is from the control set
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w(t) = (uii(t),i € K(j)). Denote by u(t) = (ul(t),...,u'(t),...,u™(t)), where u'(t) =
(u'(t),j € K(i)) is the control variable of player i in the network structure. We use x¢ =
(2}, ..., 28, ..., z8) to denote the vector of initial conditions, here z} = (2% (ty),j € K(i))
is the set of initial conditions of player i.

The payoff function of player ¢ is given by

T
Hi(whou! o? T—to) = S K (af ,ul o'\ T—t0) = 3 / B (29 (1), (7)) dr. (2)
JEK(4) JEK (i) iy

Here, the term /7 (2% (), u% (1)) is the instantaneous gain that player i can obtain through
network links with player j. We also suppose that the term AJ(z%(7),u% (7)) is non-
negative.

3. The characteristic function. The game I'(z(, T — () is defined on the network
(N, L), the system dynamics (1) and players’ payoffs are determined by (2). Player i
(i € N), choosing a control variable u%/ from his set of feasible controls, seeks to maximize
his objective functional (2).

Suppose that players can cooperate to achieve the maximum total payoff:

T
Lo Y /hg(g;W(T)w(T))dT ,
ENjeR (i) \to
subject to dynamics (1) and the corresponding to the optimal cooperative strategies of
players (t) = (@(t),..., @ (t), ..., a'(t)), where @'(t) = (4, j € K(i)) exist. Denote the
corresponding cooperative trajectory of player i by 2% (t), i € N, j € f((z) The trajectory
z(t) = (z(t), ..., (t),...,2"(t)) is called optimal cooperative trajectory, where Z¢(t) =

(@ (1), j € K(i)).

Then the maximal joint payoff can be expressed as
T
> 3 | [ reie.am
€N jeK (i) \to
In [18] introduce a new characteristic function

T

V(Siro T—t) =Y Y /hg(:zii(T),j;ﬂ(r)>dT 4

€S je K()NS \to

T

D / W@ (), 29 (r))dr

€S jeK(H)NN\S \iy

for S C N. The values of characteristic function for each coalition are calculated as joint
payoff of players from this coalition plus payoffs (multiplied on discount factor depending
from S) of players which do not belong to the coalition S but have connections with players
from S. We consider a special case of this characteristic function, when a(S) = a and do
not depend on coalition S, a € [0,1).
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Defintion 1. The characteristic function V(S;xo, T — to) is defined as

T
V(Siz T—tg) =3 Y /hg(:zij(T),aif(T))dT +
€5 jeR(1)NS \io
T
YD / B (29 (7), @ (7)) dr 3)
€S e R(1)NN\S \io

for S C N. Here a € [0,1), note that every player i from the coalition S plays the
independent pairwise differential games with players j entering in K (i) NS and also with
players outside coalition S (j belongs to the K (i) N (N \ 5)).

From (3), for coalitions {i},{@},{N}, we get equations

T
V({i},2p, T—tg) =a Y /hg(;fij(T),aij(T))dT , (4)
JEK(i),5#i \io
V({@} s xo, T — to) =0,
T

V({N};xo,T—to) = " max Z Z /hg(xij(7)7uij(7—))d7' =
TN jeR () \io
T
=> > / W (% (), @ (1))dr
€N jeK () \to
Defintion 2. The characteristic function V(S;z¢,T —to) is called convex (or super-
modular) if for any coalitions S7, So C N the following condition holds:

V(Sl U So;zg, T — to) > V(Sl;xo,T — to) + V(SQ;.Z‘(),T — to) — V(Sl N Sy;xo, T — t()).

A game is called convex if its characteristic function is convex.

Proposition 1. The characteristic function V(S;zo, T — tg) defined by formula (3),
S C N is convex.

P r oo f. See Appendix.

Proposition 2. The characteristic function V(S;xg,T — t9) defined by formula (3),
S C N is time consistent.

From (4), we obtain

t

V(SizoT—t) =Y 3 /hg(:zij(T),aiﬂ‘(T))dT +

€S jeK(1)NS \io
t

YD / Wi (@9 (7), @ (1)) dr | + V(S;2(), T — 1), (5)

1€S jeK(1)NN\S \io

here a € [0, 1), and Equation on (5) show the time consistency property of the cooperative-
trajectory characteristic function V' (S;xz, T — to).
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4. Cooperative game, the Shapley value. Next, we need to determine the rule for
allocating the maximum total payoff between the players. This paper considers the core
and the Shapley value as the optimality principles. We denote the set of all imputations
as L(zo, T — to)

E(Qjo,T — to) = {g(Io,T — to) = (ﬁl(IQ,T — to), ...,En(SC(),T — to)) : V(N,QS‘(),T — to) =

=3 &i@o, T —to), &i(wo, T — to) = V({i} 120, T —to)}
iEN
fori € N.
4.1. The core.

Defintion 3. The core C(xq,T — ty) is the subset of imputations L(zo, T — to), and
is defined as

é(l‘o,T — to) = {f(.]?o,T — to) S E(Z‘(),T — to) : Zgi(aio,T — to) = V(S;l‘o,T — to)}
€8

for S C N.
4.2. The Shapley value. Using the newly defined characteristic function, we intro-
duce the Shapley value imputation in this subsection:

Shi(wo, T —to) = 3 (15— 1)n('n —1SDt ©
o '

X [V(S;l‘o,T— to) — V(S\{Z},%o,T — to)]
for i € N. Form (6), we get

(S| =Dl —|SPL

Shi(xo,T — to) = Z

SCN nl
S5i
T
xl /h i T))dT) +
leS jeK()NS \iy
T
+a) ( W (3 (1), @ (7))dr | — (7)
leS je k(1) N\S)

- > ( h ), @ (r))dr | —

1eS\{i} ]EK(l)ﬂS\{Z}

a0 Y 3 / B (29 (), @ (7)) dr

1eS\{i} je K()NN\(S\{i}) \io

Theorem 1. The Shapley value imputation in (7) satisfies the time consistency pro-
porty.
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P r o o f. By direct computation we get formula

Shi(wo, T —to) = Y (IS] = 1)}(n — |S])

n!
SCN
CEY

X[Z > /h{(:zlj(T),aU(T))dT +

leS jeK()NS \bo

!
X

t
YD /h{(ilj(T),ﬁlj(T))dT _

l€S je K(I)NN/S \to

t
SED D SN I TELCR IV

1leS\{i} je K(Hns\{i} \to
t

DD SEN W O RUCT

1leS\{i} je K(i))nN\(S\{i}) \to

+ Shi(z(t), T —t)

for i € N, which exhibits the time consistency property of the Shapley value imputation,
Shz({f(t),T — t) fort € [to,T}.

In most cases, the Shapley value usually does not satisfy this condition [19-21].

5. Example. Consider following game-theoretic model of differential network games.
The network structure is shown in Figure 1. There are three players to present the three
national or regional factories that participate in the game with the network structure,
N ={1,2,3}.

Figure 1. Network structure

As for arc(1, 2) (similar game is considered in [22]). Regions 1 and 2 play the pollution
game. Each region has an industrial production site. The production is assumed to be
proportional to the pollution u'? and w?'. Thus the strategy of each player is to choose
the amount of pollutants emitted to the atmosphere, u'? € [0, b12], bia > 0, u? € [0, ba1],
ba1 > 0, A1s is the amount that the government subsidizes to the factory 1 at each moment,
d1221%(t) is the environment department that penalizes factory 1 at each moment. The
dynamics of each players 1 and 2 on arc(1,2) is described by

B2(t) = u'?(t) +u(t), x'2(to) = 2l?, t € [to,T), (8)

96 Bectuuk CII6I'Y. [Ipuknagunas maremaruka. Vudopmaruka... 2024. T. 20. B, 1



P2 (t) = w? (t) +u?(t), 2 (to) = 23", t € [to, T (9)

The payoff of each player in the pairwise interactions game on the arc(1, 2) is defined
as

T
C 1 -
K112(330 ,’U,u(t),U21(t),T - to) = / <b12 — 2U12(t)) Uu(t) - d12x12(t) + A12 dt,
to - -
T 1 _
K21(.%‘0 ,ulz(t)7u21(t),T — to) = / (b21 — 2u21(t)> u21(t) - d21£L’21 (t) + A21 dt.
to - -

As for pair arc(1, 3) (similar game is considered in [23]), we examiner another pollution
game. The release pollution of each player 1 or 3 are denoted by u!'? and u3', where
3 € 10,b13], b1z > 0, w3t € [0,b31], b31 > 0. Let x'3(¢) and x31(t) denote the stock of
accumulated pollution by time ¢. The dynamics of each player 1 and 3 at pair arc(1, 3) is
described by

P = ul3(t) + P (t) — 623, 23(ty) = 23, t € [to, T). (10)

B3t) = w3 () +ut(t) — 623, 2P (to) = 3t t € [to, T). (11)

Where § is the absorption coefficient corresponding to the natural purification of the
atmosphere, we assume that § > 0. Here we don’t consider the additional cost. The payoff
of each player in the pairwise interactions game on arc(1, 3) is defined as

T
Kl (0.0 (0.7 1) = [ ((b - éu”(t)) a3 () — dygr' (1) + Alg) dt

to

1

K3N (a3t w3 (), u® (1), T — to) = /T ((b31 — 2u31(t)> ut(t) — dgy2® (1) + A31> dt.

0
As for arc(2,3) (similar game is considered in [24]), we examiner another pollution
game. The dynamics of the stock of pollution for each player at arc(2,3) is described by

@ (t) = p(u® () + uP(t) — e (1), 2% (to) = 25°, t € [to, T]- (12)

Here p > 0 is the marginal influence on pollution accumulation 223

emissions, and € > 0, € # J is the rate of natural absorption:

issued by the players’

#32(t) = p(u®(t) + u® (1)) — ex®(t), 2**(to) = 232, t € [to, T). (13)

The payoff of each player at arc(2,3) is defined as

T
K%B(xo ,u23(t)7u32 —tp) / |:<ng — fu ( )) u23(t) - d23x23(t) + Ags| dt
to
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T
K§2(1'82,u23(t),u32(t),T — to) = / |:(b32 — ;’Ufrﬂ(?ﬁ)) u32(t) — d32$32(t) + A32:| dt.

to

In the network game, as for multiple links, the payoff of each player is defined as

T
20,02 (0,000 (0.7 = o) = [ | (2 = 3200 ) 20) -

to

T
— diz'?(t) + Am} dt + / [(1313 - ;Ulg(t)) u'3(t) — dizz"(t) + A13] dt,

T
Hafa (0,02 (0,0, 00, T~ o) = [ | (121 = 320 ) ') -

T
1
— d21$21(t) + A21:| dt + / |:(b23 — 2u23(t)) u23(t) — d23x23(t) + A23:| dt,
to

Ha(x3, u'3(t), u® (1), (t),u** (1), T — to) = / { <b31 - ;u?’l(t)) udt(t) —

T
- d31$31(t) + A31:| dt +/ |:<b32 — ;U?)?(t)) u32(t) — dggl’gz(t) + A32:| dt.
to

Subject to dynamics (8)—(13).
Under the cooperation, players maximize the total payoff

V{N}; 20, T —to) =

T
% L i3\ yis ij
= max bij — =Uu u 7dijx +A’Lj dt.
wl2 21 13 31 4432 4423 4 — 2
1EN jeK (i) to

Using Pontryagin Maximum Principle (PMP) to solve the optimization problem,
firstly, write down the Hamiltonian function:

H(zo, T — to,u(t), ) = Z Z [(bij — %uij)uij —di;z" + Ayl + pra(u? +u?t) +
i€1,2.3 je R (i)
+ o1 (U + ul?) + o13(ut® + B — 6213) + g1 (uP! + ul® — 6231) +
4 @23(#(“23 _|_u32) _ €$23) 4 @32(#(“32 +u23) _ 63332).
Here we have the following boundary conditions on adjoint variable ;;(t):
@i (T') = 0.
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Taking the first derivative with respect to u'2, we get the expressions for the optimal
controls:
u'?(t) = bia + (12 + 21)-

The canonical system is written as

212 =12 2 = p 4+ 2(p12 + p21), (14)

P12 = di2, P21 = da1,

where b = b12 + bgl.
Recall that the initial condition is #1%(tg) = x{2, also using another boundary condi-
tion, which is obtained from (8)—(13), then we get the

p12(t) = —di2(T — 1),

(pgl(t) = —d21 (T — t).

Substitute this solution to the differential equation (14) to obtain the expression for Z'2(t):
T2 (t) = dt* — dt3 + (b —2dT)t + (—=b + 2Td)ty + 42,
here d = di2 + do1. The optimal control is
% (t) = bip — d(T —t).
Similarly, we get the optimal trajectories:
22 (t) = dt? — dt2 + (b — 2dT)t + (—b + 2Td)to + x3*,

b e 0T
23 (t) = Crge™ + 5 65727

here C3 = et (3% — 2 #’to)ff)’ b=bys+bs1, d=dis+ dsp;
_ _ B e_é(T_t)Cz
mgl(t) = Cse ot + g - Ta

here C3y = et (23! — g + #_”’)J);

N Ni) N efe(Tft)dA/uﬂ B 2dA,U,2

3_5'23(t) = 0236761& 3

)

€ €2

e~ =(T=10) ;2

here Cag = e<to (233 — 1L + 2{752)7 d = das + ds2, b= bog + bsa;

€2
b —e(T=1t)j,,2 2du2
T2(t) = Cyoe™ " + Bt 5 g
€ €

e’

7 —e(T—tg) 5 A A
here C3y = BEto(a?gQ — ub + eqﬂﬁ# + 2‘:71;2), d = dog + d3za, b = baz + b3s. The

€
corresponding optimal controls are

’UQl(t) = bo1 — d(T — t),
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a'(t) = bis — 5
W) = by —
) b d —:(T t),
(1) = by~ 1
@m0 { [ (b= o) 20+
+ Am] dt+/T Kblg — ;u13(t)) 0t (t) — di37"3( )+A13] ) ;
V({2},20, T —to) = « (/T [ (b21 — ;um(t)> ' (t) — do1 7% (t) +
+ A21:| dt + /T Kb23 — ;u%(t)) a*(t) — do3z**(T) + Agg} dt) ,
V({3},20,T —tg) = a (/T [ (b31 - ;u?’l(t)) a* (t) — ds 2 (t) +

T
+ A31:| dt + / [(b32 — ﬂgQ(t)) ’EL32(t) — dggi'gg(t) + A32] dt) R

V({1,2},20,T — to) = /T Kblg — 1a12(t)> a2 (t) — dipz'? + Alz} dt +

to

; /T [(bm - ;a%)) 21 (t) — dn @ (t) + Agl} at + a( /T { (blg -5 t)) at3(1) -

T

— di373(t) + Alg} dt) +a ( / [(b23 - %u%) (1) — doza®3(t) + Agg} dt) ,

to
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V({1,3},20,T — tp) = /T Kblg - ;a“(t)) a'?(t) — di3z"(t) + Alg] dt +

+ /T Kbgl - ;ﬂ?’l(t)) @ (t) — diy 75 (¢) + Ag,l} dt + a< /T [ (blz - ;a”(t)) a'(t) -

to

— dlg.’fl ( ) + A12 dt b3s — u32> ’17,32 — d32§332(t> + A32:| dt |,

V({2,3},20, T —

R
o]

bog — ’U, 23(t) — d23.f23 (t) + A23]dt +

+/T [(bsa — w3 (t)) w2 (t) — 322 (t) + Asa] dt + a(/T [ (521 - *U (ﬂ) u? (t) —

(1) + Am} dt) +a /T Kbm - ;aﬂ(t)) T (1) — dy 7 (1) + Agl} dt

0

Remark. The instantancous payoff in the game is (b;;— su (¢))u® (t)— d;;z™ (t)+
Ajj, since (b;j— %uij(t))u”(t) >0, u” € [0,by], if Agj > maxgisq )(dijxij(t)), t € [to, T,
then all instantaneous payoff for each player at any time ¢ are non-negative. Because of

u'(t) € [0,b;5], u'* € [0,bj;], if we treat it as a constant and integrate the differential
equations (8)—(13), we obtain:

le(t) — (u12 + u21)(t _ to) + .’L'(I)Q,
221 (t) = (u'? + u?L)(t — to) + 2L,

13( ) _ (u13+u )(1 —6(t—t0)> _’_e—é(t—to)x(lﬁ,
31(t) (u13+u31) (1 . e_g(t—to)) + 6_5(t_t0)x81,

2B(t) = e—c(t—to) 23 4 pZHu) () —e(t—to)),
2®2(t) = o—e(t— to)x32 + (u? +u32)u(1 _ e—e(t—to)).
Additional conditions

Ap > max(dlgx ( )) = dlg[b(T — t()) + .’E(1)2],
Agl 2 m2alx(d21x21(t)) = d12[b(T - to) + .Z‘gl],

)

b
Ars > max(dygz'®(t)) = dig[wge T ) + 50— e~ 0(T—to))]
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, , b

Azt = max(dg1a®! (1)) = da [l e 70710 4 1= e 2Tt
b

A23 Z m%x(dggx% (t)) = dgg[x(%S@_e(T_to) + i(l - e_e(T_tO))],
x €

b
Azy > max(dapa(1)) = dgp[af2e=T=t0) 4 E2(1 — eme(T=to))]
x €

Try to compute the core and the Shapley value. Assume the following values of the
parameters: bis = 200,by7 = 250,b13 = 300,b31 = 400,b23 = 350,b30 = 500,d12 =
17d21 = 1.5,d13 = 2.5,d31 = 37d23 = 2.5,d32 = 3.5,6 = 0.3,/L = 0.8,6 = 0.08,0[ =
0.1t = 0,t = 2.5, T = 5,24? = 10,23 = 20,23 = 25,23 = 30,22 = 50,232 = 40,
Ap = 2260, Ayy = 3405, A1z = 4545.69, A3y = 5458.17, Aoz = 7089.5, Az = 9901.535,
V(N,xo, T —tg) = 1.975334 - 10°. Then we calculate

V({1},20,T — to) = 3.383075 - 10%,

V ({2}, 20, T — to) = 4.807020 - 10*,
V ({3}, 20, T — to) = 1.156325 - 10,
V({1,2}, 20, T — to) = 3.254166 - 10°,
V({1,3},20,T — to) = 8.226729 - 10°,
V({2,3}, 20, T — to) = 1.024778 - 105,
Sh(zo; T — to) = (4.921934 - 10°,6.003659 - 10°, 8.827752 - 10°).

The numerical results are displayed in Figures 2-5. In Figure 2, we plotted the optimal
policy %%, and optimal trajectories %, i € 1,2, 3. Given three graphic interpretations of
the obtained results. Figures 3-5 show the domains corresponding to the feasible imputa-
tion set L(xg, T —tg), and the core C(zqg, T —to) constructed using V (S, xg, T — o). Color
with shadows represents the core, and the blank star represents the Shapley value impu-
tation. The Figure 3 represents the game on the time interval form ¢y to 7. On Figure 4
is the subgame that happened on the time interval [¢g, ], and on Figure 5 is the subgame

that happened on the time interval [t, T|. In our case, we use tg, t, T as above value. The
resulting Shapley value imputation belongs to the core of the initial game.

Table. Values of characteristic function

S V(S,zo,t — to) V(S,z(t), T — 1) V(S,z0, T — to)
N 1.003462 - 10° 9.941128 - 10° 1.975334 - 10°
{1} 1.733632 - 10% 1.787801 - 10% 1.649443 - 10%
{2} 2.448433 - 10% 2.358587 - 10% 4.807020 - 10%
{3} 5.852549 - 10% 5.710699 - 10% 1.156325 - 10°
{1,2} | 1.666546-10° 1.587619 - 10° 3.254166 - 10°
{1,3} | 4.180839-10° 4.045889 - 10° 8.226729 - 10°
{2,3} | 5.190691 - 10° 5.057093 - 10° 1.024778 - 10°

To illustrate the time consistency, we choose the Shapley value as the cooperative
solution. Then the payoffs of players at time period [0,¢] are (2.508643 - 10°,3.049309 x
10°,4.476661-10°), and at the time period [t, T are (2.584275-105, 2.954349-10°, 4.351089 x
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10°). Furthermore, from the Table, the values of the characteristic function is also time
consistent.

(17336.32,24484.33,961641.35)

Shapley value
X

(920452.18,24484.33,58525.49) (17336.32,927600.19,58525.49)
Figure 3. Cooperative game at [to, T] (X is Shapley value also for Figures 4, 5)

(17878.01,23585.87,952648.92)

Shapley value
3

(913419.94,23585.87,57106.99) (17878.01,919127.8,57106.99)
Figure 4. Cooperative game at [to, t]

(16494.43,48070.2,960213.37)

Shapley value

X

(861075.3,48070.2,115632.5) (16494.43,892651.07,115632.5)

Figure 5. Cooperative game at [t, T
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6. Conclusion. In this paper, we studied the differential game with pairwise inter-
action, a new type of game in game theory. This give us the possibility to getting the new
characteristic function in the game. The convexity of characteristic function is proved. By
cooperation, we considered the Shapley value and the core as solutions. The key of this
research is the differential game with pairwise interactions, where each player can play
multiple different differential games. Finally, the results are illustrated by an example.

Appendix. P r o o f of proposition.

We also introduce the additional notation

T
wy; = / B (3 (7, @ (7)) dr-

Using (4), (5), we can rewrite:

’U(SlUSQ;SL‘(),T—t()) = Z Wij + @ Z Wij =
~i€SlLJSg _ 1€S1USo
JEK(1)N(S1US2) JEK(1)N(N\(S1US2))
= 2 wat DL wgt X wyt ) wye
~7L€S1\Sz ~1’65’1\52 ~'L'GSl\S'z ~’i€Sz\Sl
JEK()N(S1\S2) JEK(i)N(S2\51) JEK()N(S1NS2) JEK(i)N(S2NS1)
o wgt D> wyt Y wgt > wy
1€S2\S1 1€52\S1 1€S1NS2 _ES1INS2
FEK (i)N(S2\51) FEK(1)N(51\82) JEK (1)N(S1\S2) JEK (1)N(S1NS2)
+ Z Wij + @ Z Wij + & Z Wij +
jESlﬂS2 _ 1€S1NS2 iGSl\SQ
JEK(i)N(S2\S1) JEK(I)N(N\(S1US2)) FEK (1)N(N\(S1US2))
+ « Z wij, (15)
_i€S2\S51
JEK (1)N(N\(S1US2))
’U(Sl;xo,T—to) = Z Wij + @ Z Wiy = Z Wij +
€51 _i€S: €51\ S2
JEK(4)NSy JEK()N(N\S1) JEK(1)N(S1NSz)
+ Z wij + Z Wi + Z Wi + « Z Wij +
1€51\S2 _1E€ESINS2 1€ESINS: 1€51\S2
FEK(1)N(S1\S2) JEK()N(S1NS2) JEK (1)N(S1\52) FEK(I)N(N\(S1US2))
+ « Z w;; + Z Wi + o Z Wij, (16)
1€51\S2 _ i€S1NS2 1ES1NS:
FEK(1)N(S2\S1) JEK(I)N(N\(S1US2)) JEK(i)N(S2\S1)
’U(SQ;LEQ,T—to) = Z wij—i-a Z Wij = Z ’LUij"f'
€S> _i€ES> 1€52\S1
JEK(i)NS2 JEK(i)N(N\S2) FEK (1)N(S2\S1)
> wgt > wy+ Y wyta > wij
1€52\S1 _i€S2NSy 1€S2NS1 1€52\S1
FEK (i)N(S2NS1) JEK (i)N(S2NS1) JEK (1)N(S2\S1) FEK (1)N(N\(S2US1))
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+ Z wij + o Z wij + Z Wij, (17)

1€52\S1 _ i€S2NS 1€8S2NSy
JEK()N(S1\S2) JER()N(N\(S2US1)) FER ($)N(S1\S2)
’U(SlmSQ;{E(),T—to) = Z ’wij‘f'a Z Wi; =
_i€51NS, _ i€SINS:
JEK(1)N(S1NS2) JEK(i)N(N\(S1NS2))
= Y. wyta ) wg o > wi +
_1E€S1INS2 _ i€S1NS2 1€S1NS2
JEK()N(S1NS2) JEK ()N(N\(51US2)) JEK(i)N(S1\52)
ta Y wy (18)
jeSlﬁSQ
FJEK(1)N(S2\S1)

Subtracting the expressions (16), (17) from (15) and adding (18), we obtain formula

(1 - a) Z wij + Z Wij > 0.
~i€5’1\52 ~i652\51
FEK (i)N(S2\S1) JEK(1)N(S1\S2)

The inequality follows from the non-negativity of payoffs. The statement of the proposition
is proved.
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B3auMogeiicTBusMm®
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IIpemaraercsa nuddepennuaipHas Urpa ¢ HapHBIM B3anMoeicTBreM. BepuinHbl B cetn —
9TO UTPoKH, a pebpa — CBs3u MeXkJay HuMH. [Ipm aTOM paccmMaTpmBaeTcsi KOOIEpaTUBHBIN
caydail. Beogurca HoBas xapakTepucTudeckas (MYHKIUS U JOKA3BIBAETCS €€ BBIILYKJIOCTD.
Anpo ucrnonp3yercsd B KadecTBe KOOIIEPATUBHOIO IIPUHITUIIA OITHMAJIBHOCTH. XapaKTePUCTH-
Jeckas PYHKIUSA TO3BOJIAET IIOCTPOUTH YCTOWIMBOE BO BPEMEHH (JTMHAMUYECKN YCTOHIUBOE)
pemienue, Takoe kKak BekTop lemtn u sapo.

Kamouesvie cao6a: KOOTIEpATUBHBIE UTPHI, MU HEPEHITHATBLHBIE CETEBbIE UT'PHI, TAPHOE B3au-
MozeiicTBUe, XapaKkTepucTuieckas pyukuns, BekTop [llemnnu, cocToATeIbHOCTE 110 BpEMEHH.
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