
UDC 519.8 Вестник СПбГУ. Прикладная математика. Информатика... 2023. Т. 19. Вып. 2
MSC 90-08

Dynamic path planning algorithm for autonomous mobile robot
with a minimum number of turns in unknown environment

G. E. Rego, R. V. Voronov
Petrozavodsk State University, 33, Lenina pr., Petrozavodsk,
185910, Russian Federation

For citation: Rego G. E., Voronov R. V. Dynamic path planning algorithm for autonomous
mobile robot with a minimum number of turns in unknown environment. Vestnik of Saint Peters-
burg University. Applied Mathematics. Computer Science. Control Processes, 2023, vol. 19, iss. 2,
pp. 264–274. https://doi.org/10.21638/11701/spbu10.2023.211

The article is devoted to the problem of reactive navigation of a mobile robot with limited
information about the environment. An algorithm for finding a path from source to the target
with a minimum number of turns is described. The idea of the algorithm is based on the bug
family of algorithms for reactive navigation. The mobile robot remembers the boundaries of
obstacles and calculates the angle of rotation depending on the surrounding situation. The
difference from bug algorithms is that the robot does not move “along the obstacle”, but turns
only in a limited number of cases. The results of testing the algorithm on simulated polygons
are presented. Models of fallen trees, stumps and swamps were considered as obstacles. The
performance of the algorithm is evaluated by comparing the minimum possible number of
turns with the number of turns in the path obtained using the algorithm.
Keywords: path planning, mobile robot, reactive navigation.

1. Introduction. The development of navigation algorithms is one of the key areas
in modern scientific research, which is motivated by the active development of unmanned
vehicles. In order for autonomous systems, such as unmanned aerial vehicles, cars or robots,
to move independently, it is necessary to provide them with the ability to navigate in space
[1]. This means that they must be able to determine their location, the location of the
target and obtain enough information about the environment for route planning [2].

There are several approaches to the navigation of mobile robots. Usually there are
2 types of navigation: global planning and local planning. Sometimes reactive navigation
is defined separately. Global navigation is characterized by the presence of complete in-
formation from the robot about the map of the area, traffic rules, as well as possible
routes and communication with orbiting satellites. This type of navigation usually has a
high computational complexity and gives predictable results. Global planning is used in
unmanned vehicles. The map of the area is preloaded into the vehicle’s memory, and the
sensors detect the current situation [3–5].

Local planning differs from global planning in that not all information about the
environment is available. In such cases, the robot only knows what it was able to detect
using the sensors. Simultaneous Localization and Mapping (SLAM) [6–8] algorithms are
based on local planning. The robot moves through an initially unknown area, and maps
the objects encountered. There are many varieties of SLAM depending on sensors (visual
[9], lidar [10]) or on the subject area (underwater [11]). Reactive navigation differs from
other types in the small amount of memory available to the robot and the weak capabilities
of its sensors. The robot at the initial moment of time knows only its source and target.

c⃝ St. Petersburg State University, 2023

264 https://doi.org/10.21638/11701/spbu10.2023.211

One of the most popular reactive navigation algorithms with proven convergence are bug
algorithms [12, 13]. These algorithms use various metrics to evaluate their performance.
However, none of them use the number of turns (or links of the path) taken by the robot
as a performance metric. This article presents algorithms that are designed to minimize
the number of links into which the robot’s path from the source to the target is divided.

Such a metric will be useful when building routes in a forest area. For example, there
is a forest robot whose purpose is to plant trees or carry out forestry work [14]. When
carrying out work on felling forests, portages are laid. However, since felling is carried out
by heavy equipment, and some time, up to several years, may elapse between tree felling
and planting, we assume that the forest robot will move in the absence of roads. Usually,
the conditions for performing work in a cutting area are determined by the type of soil in
the area. As a rule, soil types are classified into four categories [15, 16]. The permissible
duration of forestry work depends on the category of soil. The general principle is simple:
the harder the soil, the longer the work can be carried out.

During the passage of machinery, the top fertile soil layer is broken. Especially during
periods of high humidity and soil erosion (for soils of the second and third categories).
Severe damage occurs in places where forestry machines turn. It is necessary to minimize
the number of turns during the movement of forestry machines and a forest robot in order
to minimize the detrimental effect on the fertile soil layer. At the same time, a typical
cutting area contains many obstacles that need to be avoided. The most common of these
are fallen trees, stumps and impassable places, such as swamps.

These factors actualize the task of developing a reactive navigation algorithm with
minimization of the number of turns. The article has the following structure. Further the
mathematical model of the problem being solved and formalizes the concepts used in the
subject area is described. Then an algorithm for searching for a target point in an unknown
terrain is presented, as well as an auxiliary algorithm for determining motion vectors in a
collision with obstacles. After that the results of the algorithms is presented.

2. Mathematical model. Let’s set the scene along which the robot model moves
(hereinafter referred to as the robot) as a polygon P . A polygon is a part of the plane
bounded by a closed polyline without self-intersections. The polygon may contain some
restricted areas (obstacles). The set of obstacles will be denoted as O = {o1, o2, . . . , oP }.
Each obstacle is a polygon. A link is a part of a straight line bounded by two points. The
obstacles do not touch each other. This means that for any oa, ob ∈ O, a 6= b, oa ∩ ob = Ø.
The set of all points that belong to obstacles will be denoted as O = ∪POp.

The position of the robot R will be set as pr = (xr, yr, θr), where xr, yr are the
coordinates of the point where the robot is located, θr is the orientation of the robot
(in degrees) relative to the target. At the moment of initialization of the solution to the
problem, R is at the point ps = (xs, ys, 0) ∈ P , where 0 means that the robot is directed
to the target. The target pt = (xt, yt, 0) ∈ P is the point where the robot needs to get to.
At each moment of time, a segment (pr, pt) is built between the current location of the
robot and the target. θr is defined as the angle the robot must turn to be directed at the
target.

Initially, the robot has no information about the map P . The robot has some visibility
area V in the form of a circle of radius v. We define the current visibility area V (pr) as
a set of points of the polygon P such that the distance between them and the robot is
less than or equal to v and the segment between this point and the point where the robot
is located does not intersect with any of the obstacles. Formally, this definition looks like
this: V (pr) = {p ∈ P : d(p, pr) ⩽ v & (p, pr) ∩ O = Ø}. Further, we will write about this

Вестник СПбГУ. Прикладная математика. Информатика... 2023. Т. 19. Вып. 2 265

area that the robot “sees” it. By free space in a given direction we mean the absence of
obstacles on the trajectory of movement in this direction. If free space in the direction of
movement is not less than v, then the robot tries to move the distance v + δ, where δ is
some very small number.

The total path traveled by the robot can be represented as a set of links L =
{l1, l2, . . . , ln}, where the index is the number of the link in the order of priority. Each link
li can be represented as a part of a straight line bounded by a pair of points (pi1, pi2),
where pi1 are the coordinates of the beginning of the link, pi2 are the coordinates of the
end of the link. Neighboring links do not lie on the same straight line. At points that
belong simultaneously to two adjacent links, the robot turns.

Let W be the set of all paths L from the source ps to the target pt, all links of which
lie inside the polygon P and have no intersections with obstacles from the set O. We
consider the path Li better than the path Lj if |Li| < |Lj |, where |Li| denotes the number
of links in the path Li. The path containing the minimum number of links will be denoted
as L∗, that is, for any Li from W such that |L∗| ⩽ |Li|. Thus, the formal statement of the
problem is reduced to solving the optimization problem:

find a path L from W such that |L| → min.

3. Heuristic algorithm for solving the problem of finding a path with a
minimum number of turns. To solve the problem, we will put forward the assumption
that the robot is able not only to see some space within a radius v from itself, but also to
map the terrain (obstacle boundaries), as well as to estimate the distance to the visible
object. By mapping we will understand the ability of the robot to map the area in which it
has already been. However, unlike SLAM algorithms, the robot does not map everything
it sees, but only the boundaries of the obstacles that the current direction rests against.

An arc between two points on a circle of radius v will be denoted as
⌢
p1p2. The set of col-

lision points with an obstacle will be denoted as H = {h1, h2, . . . }, where hi = (xi, yi, Oi).
From each point hi, the robot can move in two directions along the obstacles αi1 and αi2.
The set of directions will be denoted as the set of vectors α = {α11, α12, α21, α22, . . . },
where the first index is the index of the corresponding collision point from H, the second
index is the numbering of the direction relative to the corresponding collision point, and
the value itself α = ⃗p1p2, where p1 is the point at which the direction of movement is
determined, p2 is the point to which this direction leads. In the future, under α we will
mean a vector, in the case, when the direction is determined, and a segment, in the case,
when we are talking about a set of points and its intersection with other objects. Let us
describe the formation of vectors in more detail.

When an intersection occurs between the current trajectory and some obstacle
Ocur, hnew is added to H. The robot stops at point pr such that: d(pr, hnew) = v/2. Di-
rections of motion from the collision point are found using the helper algorithm described
below. For definiteness, we will assume that we determine the direction αi1. To determine
αi2, similar actions are performed with a deviation to the right from the collision point.

4. Algorithm for determining the direction of movement from the collision
point.

Step 0. p1 = pr. It is necessary to determine p2. We set the point p0 on the circle of
radius v as a point lying on the current trajectory of the robot. Set the deviation value ε
(in degrees).

Step 1. Find the point pf 1 nearest to the left (by the angle of rotation) to p0 such
that (pr, pf 1) ∪O = Ø & d(pr, pf 1) = v.

266 Вестник СПбГУ. Прикладная математика. Информатика... 2023. Т. 19. Вып. 2

Step 2. Deviate from pf 1 by ε to the left along a circle with center pr of radius v.
Let us denote the obtained point by pf 2. If (pr, pf 2)∩O = Ø then p2 = pf 2, the end. Else
go to Step 3.

Step 3. Find pf 3 from
⌢

pf 1pf 2 such that (pr, pf 3) ∩ O = Ø & d(pf 3, pf 1) → max,
p2 = pf 3, the end. The set of possible directions is formed based on the presence of
obstacles around the robot. If there is free space around the robot for 360◦ and the current
direction is not set, then there is only one direction: to the target. New directions appear
at the moment when the current trajectory of movement intersects with some obstacle at
a distance of no more than v from the robot. Other obstacles do not generate collision
points if the current trajectory does not intersect with them. This situation is illustrated
in Figure 1.

Figure 1. Determination of directions of movement when a collision point appears

A situation is possible when the robot, moving along one direction, also “sees” another
(this is possible when the directions of two collision points of different obstacles are in the
visibility zone of radius v). Formally V (pr)∩αij 6= Ø & V (pr)∩αmk 6= Ø, αij 6= αmk, the
direction αij corresponds to the collision point hi and the direction αmk corresponds to
the collision point hm. In this case, it passes simultaneously in two directions if the angle
between αij and αmk is acute and there exists V (pr1) such that hm ∈ V (pr1) and V (pr2)
such that hi ∈ V (pr2) on the current trajectory. This situation is shown in Figure 2.

In the case when one of the obstacles Ocur is out of visibility area V (pr) ∩Ocur = Ø,
the last intersection point Hnew is added to H. Formally hnew = V (pr)∩Ocur. The current
direction corresponding to hcur is marked explored.

We will call a dead end a situation when the robot ran into an obstacle and the
only available direction of movement is where the robot came from to the current point.
If the robot moved along two directions simultaneously and reached a dead end, then
both directions are removed from the set A. When the robot has chosen some direction of
movement αcur, based on the collision point hcur, this direction is removed from the set A.

5. Heuristic algorithm for finding a target in a maze with minimizing the
number of robot turns.

Step 0. The parameters of the algorithm are determined, such as the source ps, the
target pt, the radius of the scope v, and the polygon map P . The set of collision points
H = Ø and the set of directions A = Ø are initialized.

Вестник СПбГУ. Прикладная математика. Информатика... 2023. Т. 19. Вып. 2 267

Figure 2. Movement along two directions (from different collision points) simultaneously

Step 1. The current segment (pr, pt) and the current scope V (pr) are initialized. If
(pr, pt) ∩ V (pr) ∩ O = Ø, the robot moves along (pr, pt) until it reaches the target or an
obstacle is encountered in the robot’s path. If pr = pt then end. If (pr, pt)∩V (pr)∩O 6= Ø
then go to Step 2.

Step 2. If hcur ∈ H, then αcur, which leads to hcur and corresponds to hcur, is
removed from A, else hcur is added to H. The set of directions of A is also completed. If
αcur corresponding to hcur = Ø then go to Step 5. Else αcur = αcur1 OR αcur = αcur2.

Step 3. The robot moves in the chosen direction along the obstacle until (pr, pt) ∩
V (pr) ∩Ocur 6= Ø OR hnew occurs in the direction of movement. If pt ∈ V (pr), then turn
to the target and reach it. The end. If (pr, pt) ∩ V (pr) ∩ Ocur = Ø then go to Step 4. If
hnew 6= Ø then go to Step 2.

Step 4. The last intersection point (pr, pt) and Ocur that the robot has seen is fixed
and hnew is stored: (pr, pt) ∩ V (pr) ∩ Ocur = hnew. It checks if the target is inside Ocur.
Next, the robot travels some short distance (for example, v/10) along the same trajectory.
If (pr, pt) ∩ V (pr) ∩O = Ø, then go to Step 1, else the robot fixes the collision point with
the obstacle on the way to the target as hnew, go to Step 2.

Step 5. If A = Ø then the end (the problem has no solution), else the robot chooses
the nearest (by the number of turns) collision point hi that has at least one unexplored
direction (d(pr, hi)) → min & αi1, αi2 ∩ A 6= Ø and moves towards it. The movement is
carried out along the already explored area, so for it you can use the algorithm for finding
the minimum path by the number of links on the polygon [17]. Go to Step 3. The end.

6. Convergence of the algorithm.
Statement. The problem of finding a path with a minimum number of turns has no

solution iff, in the algorithm for finding a goal in a maze with minimizing the number
of robot turns, there comes a moment when at Step 5 the set of directions of movement
A = Ø and the set of collision points H 6= Ø.

P r o o f. Necessity. Let the problem of finding a path with a minimum number of
turns have no solution. Let us show that the presented goal search algorithm will lead to
the state when A = Ø and H 6= Ø.

Let us assume that there is one obstacle O1 between the source and the obstacle.

268 Вестник СПбГУ. Прикладная математика. Информатика... 2023. Т. 19. Вып. 2

Then the robot, having reached the collision point h1, H = {h1}, A = {α11, α12}, chooses
one of the directions. Moving along the chosen direction, the robot maps the area. Thus,
when (pr, pt) ∩ V (pr) ∩ O1 6= Ø, an obstacle map will appear on some segment. Since
hnew = V (pr)∩O1 is fixed as a collision point, there will be collision points at the ends of
the studied segment O1.

We assume that for each iteration of the algorithm, the robot maps a part of the
obstacle no less than ε, where ε is some small non-zero positive number. Therefore, each
time moving along the selected direction from the collision point, the robot learns a new
area of the obstacle and fixes the collision points at the ends of this area. This implies
the finiteness of the algorithm. Since the algorithm searches for a target as long as there
is at least one direction, and knowing that the perimeter of the obstacles is finite, the
boundaries of a given obstacle will be completely explored in a finite number of iterations
PO1

/ε, where PO1
is the perimeter of the obstacle.

There are two possible cases. In the first case, there is one (pr, pt) that does not
intersect with an obstacle, then the goal will be achieved. In this case, at the time of
setting the last direction, A 6= Ø. In the second case, the target is inside the obstacle,
therefore, it is unreachable. The same reasoning can be extended to any finite number
of obstacles. The total number of iterations for which a complete obstacle map will be
obtained: (

∑
o Po)/ε (the sum of the perimeters of all obstacles divided by ε). As a result,

either the target is inside some of the obstacles (thus A = Ø and H 6= Ø), or there is one
(pr, pt) that does not intersect with any of the obstacles.

Sufficiency. Let us prove the sufficiency of the conditions by contradiction. Let A =
Ø,H 6= Ø and the solution exists. This means that there is some kind of obstacle O′ such
that the robot, acting according to the algorithm, built its complete map. By condition,
the target point does not lie inside this obstacle. Therefore, there is some point p lying
on the boundary of O′ such that the segment (p, pt) ∩ O′ = p. Since when moving, the
direction of movement of the intersection of the vector (pr, pt) with obstacles is checked,
when mapping this point, the robot will change direction and begin to move towards the
target. Further, either the goal will be reached, or a collision will occur with another
obstacle Oi, at the boundary of which there is also p such that (p, pt) ∩ Oi = p. In view
of the finiteness of the number of obstacles, sooner or later there will be a direction that
will lead to the goal. We arrive at a contradiction with the fact that A = Ø.

7. Checking if the target is inside an obstacle. In order to check if the target
is inside the current obstacle, it is necessary to classify the collision points according to
their correspondence to a particular obstacle. To do this, we introduce the set of obstacles
detected by the robot Of = {of 1, of 2, . . . }. For each detected obstacle, a set of collision
points Hf cur is formed from the set H. Each collision point h corresponds to some obstacle
Of cur from Of , and the only one. Denote the first point of collision with Of cur as h0cur.
The remaining collision points {h} belonging to Of cur are numbered according to the
distance (in links) from h0. After hcur is added to Hf cur, a check is made to see if the
target is inside the current obstacle. The set of points belonging to the current obstacle
form a closed polyline (Po : {hli, hli+1} ∈ Of cur & {hrj , hrj+1} ∈ Of cur, where l and
r are the left and right directions from h0). The last collision points on the left and on
the right are interconnected (hli, hrj) : hli+1, hrj+1 does not exist. If one of the branches
is missing, then the connection is made with h0. The target is unattainable under two
conditions. First, the target must belong to the resulting polygon (pt of Po). Secondly,
all points of Po faces must be explored (mapped) earlier. If the conditions are met, the
algorithm terminates due to the impossibility of achieving the target. If pt is not from Po,

Вестник СПбГУ. Прикладная математика. Информатика... 2023. Т. 19. Вып. 2 269

then it cannot be said that the target is unattainable. If pt is from Po, but not all faces
of Po are mapped, then it is possible that pt is not from Ocur. This situation is shown in
Figure 3, a.

Figure 3. False positive (a) and negative (b) result of checking if the target point
is inside the obstacle

Incompleteness. At the same time, a situation may arise when the target is inside
an obstacle, but the procedure described above does not recognize it as such. An example
is shown in Figure 3, b. Therefore, it is the absence of directions for research that is chosen
as a reliable criterion for the absence of a solution to the problem.

Separately, it is worth considering the case when, from the point of view of geo-
metry, one obstacle was classified as several. An example of such a situation is shown
in Figure 4. In this case, the check is carried out separately for each obstacle from
Of . In a situation where obstacles are combined (the direction of one obstacle is op-
posite to the other), the construction of the combined polygon is performed as fol-
lows. Assume that the algorithm initially classified merged obstacles and collision point
sets as Of 1 and the corresponding Hf 1 : {hf 10, hf 1l1 , hf 1l2 , . . . , hf 1r1 , hf 1r2 , . . . }, Of 2
and the corresponding Hf 2 : {hf 20, hf 2l1 , hf 2l2 , . . . , hf 2r1 , hf 2r2 , . . .}. For definiteness,
let’s assume that the obstacles merge on the segment (hf 1lend

, hf 2rend). Then Of1+f2 :
{hf 1rend , hf 1rend−1

, . . . , hf 1r1 , hf 10, hf 1l1 , . . . , hf 1lend
, hf 2rend , hf 2rend−1

, . . . , hf 2r1 , hf 20,

hf 2l1 , . . . , hf 2lend}.

Figure 4. The mark h1 — the first obstacle, the mark h2 — the second
(the robot identifies the obstacle as two different ones)

270 Вестник СПбГУ. Прикладная математика. Информатика... 2023. Т. 19. Вып. 2

8. Experiments. The path L∗ can be found by applying, for example, the algorithm
for finding the minimum path in terms of the number of links [17]. However, the poly-
gon map must be known for this. In practice, this is not always possible. The algorithm
described above is applied precisely in such a situation when the map is not known. How-
ever, to measure the efficiency of the algorithm, when conducting experiments, we will
compare the path L∗ obtained using the algorithm [17] and the result L# obtained using
our algorithm.

For the experiments, objects were generated that have a similar shape to the real
ones found in the forest area. Real objects that can be obstacles: a stump, a fallen tree, a
swamp or any other impassable terrain. The model of a stump is a circle of small radius,
the model of a swamp is a flat figure of arbitrary shape, the model of a fallen tree is a
rectangle with a small length and a large width. Schematically, the obstacles are shown in
Figure 5.

Figure 5. Typical obstacles in the cutting area
a — fallen tree; b — stump; c — swamp.

A performance metric was also calculated for each experiment. As a metric, we used
the deviation of the obtained path length from the optimal one e = (|L#| − |L∗|)/(|L∗|).
The values of e lie between 0 and ∞. In addition, frequency histograms of the metric e
were constructed. The histogram for experiment N 1 is shown in Figure 6.

The results of the experiments are presented in Table.

Тable. Results of experiments on finding a path on a polygon
with a minimum number of links

Number Number of links Number Number Average Median
expe- when applying of Obstacle of number number Median
riment the min-link-path obstacles type launches of legs of hops e

algorithm
1 2 1 Swamp 900 6.15 4 1.0
2 2 1 Stump 1000 4.38 4 1.0
3 2 1 Fallen tree 500 15.82 14 6.0
4 2 2 Swamps 900 6.39 5 1.5
5 2 5 Stumps 500 12.78 6 2.0

An example of how the minimum path in terms of the number of links and the path
obtained using the presented algorithm look like is shown in Figure 7.

Вестник СПбГУ. Прикладная математика. Информатика... 2023. Т. 19. Вып. 2 271

Figure 6. Histogram of the distribution of the results of experiment, on the x-axis, the metric e,
on the y-axis, the number of measurements with this metric

Figure 7. The difference between the minimum path and the path traveled by the robot

The experiments were carried out mainly on polygons with a small number of obstac-
les. In most experiments, the median e did not exceed two. This suggests that most often
(with random generation of obstacles) it is possible to predict the length of the robot’s
route, approximately knowing the degree of terrain coverage by obstacles. In many ways,
the efficiency of the algorithm depends on the selection of parameters. For example, if it is
known that obstacles are mostly long (by long we mean obstacles whose length is several
times greater than v), then it is necessary to increase the amount of movement along the
current trajectory at Step 4 of the above algorithm.

9. Conclusion. This article discusses reactive navigation algorithms. The problems
of this area are associated with the movement of a mobile robot in an unknown area in
advance. This article considers a problem when the robot needs to get from the source
point ps to the target point pt with a minimum number of turns. An algorithm for moving
the robot around the polygon with minimization of the number of path segments has been
developed.

A significant problem is the presence of obstacles. Existing algorithms assume that

272 Вестник СПбГУ. Прикладная математика. Информатика... 2023. Т. 19. Вып. 2

the robot, after a collision with an obstacle, chooses the direction of movement, and then
moves “along the obstacle”. In this case, it is not clear how to count the number of path
links.

The algorithm presented in this article solves this problem. The main idea of the
algorithm is rectilinear movement after choosing a direction. This allows you to accurately
count the number of links of the path and formalize the implementation of the turn. A
separate algorithm is described for determining motion vectors. Its main idea is to move
not directly to the last obstacle point that the robot sees at the current moment, but with
some shift to the side. This is done in order to reduce the number of turns. It is assumed
that the obstacle exceeds the visibility area and to bypass it, it is necessary to move to
the side.

The presented algorithms were tested during experiments. Experiments have shown
that the relationship between the radius of the field of view and the size of the obstacle
is important. Determination of the optimal visibility area, in particular, for a forest robot
requires a separate study.

References

1. Alatise M. B., Hancke G. P. A review on challenges of autonomous mobile robot and sensor fusion
methods. IEEE Access, 2020, vol. 8, pp. 39830–39846.

2. Tang L., Yuta S. Indoor navigation for mobile robots using memorized omni-directional images
and robot’s motion. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, vol. 1,
pp. 269–274.

3. Sukkarieh S., Nebot E. M., Durrant-Whyte H. F. A high integrity IMU/GPS navigation loop for
autonomous land vehicle applications. IEEE Transactions on Robotics and Automation, 1999, vol. 15,
no. 3, pp. 572–578.

4. Pardhasaradhi B., Reddy Y. R., Cenkeramaddi L. R. Machine learning-based screening and
measurement to measurement association for navigation in GNSS spoofing environment. IEEE Sensors
Journal, 2022, vol. 22, no. 23, pp. 23423–23435.

5. Li X., Song B., Shen Z., Zhou Y., Lyu H., Qin Z. Consistent localization for autonomous robots
with inter-vehicle GNSS information fusion. IEEE Communications Letters, 2022, pp. 120–124.

6. Smith R. C., Cheeseman P. On the representation and estimation of spatial uncertainty. The
International Journal of Robotics Research, 1986, vol. 5, no. 4, pp. 56–68.

7. Smith R. C., Self M., Cheeseman P. Estimating uncertain spatial relationships in robotics.
Autonomous robot vehicles. New York, Springer Publ., 1990, pp. 167–193.

8. Leonard J. J., Durrant-Whyte H. F. Simultaneous map building and localization for an autonomous
mobile robot. Proceedings of Intelligent Robots and Systems. Intelligence for Mechanical Systems, 1991,
vol. 3, pp. 1442–1447.

9. Chen Y., Zhou Y., Lv Q., Deveerasetty K. K. A review of V-SLAM. IEEE International Conference
on Information and Automation (ICIA), 2018, pp. 603–608.

10. Huang L. Review on LiDAR-based SLAM techniques. International Conference on Signal
Processing and Machine Learning (CONF-SPML), 2021, pp. 163–168.

11. Hidalgo F., Bräunl T. Review of underwater SLAM techniques. 6th International Conference on
Automation, Robotics and Applications (ICARA), 2015, pp. 306–311.

12. Lumelsky V. J., Stepanov A. A. Dynamic path planning for a mobile automaton with limited
information on the environment. IEEE Transactions on Automatic Control, 1986, vol. 31, pp. 1058–1063.

13. Ng J., Bräunl T. Performance comparison of bug navigation algorithms. Journal of Intelligent
and Robotic Systems, 2007, vol. 50, no. 1, pp. 73–84.

14. Galaktionov O., Zavyalov S., Shchegoleva L., Korzun D. Features of building a forestry intelligent
robotic system. Proceedings of 29th Conference of Open Innovations Association (FRUCT), 2021, pp. 433–
436.

15. Schönauer M., Prinz R., Väätäinen K., Astrup R., Pszenny D., Lindeman H., Jaeger D.
Spatio-temporal prediction of soil moisture using soil maps, topographic indices and SMAP retrievals.
International Journal of Applied Earth Observation and Geoinformation, 2022, vol. 108, pp. 102730.

16. Galaktionov O. N., Kuznetsov A. V. Reduction of negative impact of skidders on the forest
environment. Astra Salvensis, 2018, pp. 381–390.

Вестник СПбГУ. Прикладная математика. Информатика... 2023. Т. 19. Вып. 2 273

17. Mitchell J. S. B., Rote G. Minimum-link paths among obstacles in the plane. Proceedings of the
Sixth annual Symposium on Computational Geometry, 1990, pp. 63–72.

Received: February 14, 2023.
Accepted: April 25, 2023.

Au t h o r s’ i n f o r ma t i o n:

Grigogij E. Rego — Postgraduate Student; regoGr@yandex.ru

Roman V. Voronov — PhD in Technical Sciences, Associate Professor; rvoronov@petrsu.ru

Алгоритм динамического планирования пути с минимальным числом
поворотов мобильного робота при ограниченной информации
об окружающей среде

Г. Э. Рего, Р. В. Воронов

Петрозаводский государственный университет, Российская Федерация,
185910, Петрозаводск, пр. Ленина, 33

Для цитирования: Rego G. E., Voronov R. V. Dynamic path planning algorithm for autono-
mous mobile robot with a minimum number of turns in unknown environment // Вестник Санкт-
Петербургского университета. Прикладная математика. Информатика. Процессы управле-
ния. 2023. Т. 19. Вып. 2. С. 264–274. https://doi.org/10.21638/11701/spbu10.2023.211

Статья посвящена проблеме реактивной навигации мобильного робота при ограничен-
ной информации об окружающей среде. Описан алгоритм поиска пути из исходной
точки в целевую с минимальным числом поворотов. Идея алгоритма основывается на
семействе алгоритмов bug для реактивной навигации. Мобильный робот запоминает
границы препятствий и подсчитывает угол поворота в зависимости от окружающей си-
туации. Отличие от bug-алгоритмов заключается в том, что робот не двигается «вдоль
препятствия», а поворачивает только в ограниченном числе случаев. Приводятся ре-
зультаты апробации алгоритма на смоделированных полигонах. В качестве препятствий
рассматривались модели поваленных деревьев, пней и болот. Работа алгоритма оцени-
вается с помощью сравнения минимально возможного числа поворотов с числом пово-
ротов пути, полученным с помощью алгоритма.
Ключевые слова: расчет пути, мобильный робот, реактивная навигация.

Кон т а к т н а я и н формаци я:

Рего Григорий Эйнович — аспирант; regoGr@yandex.ru

Воронов Роман Владимирович — д-р техн. наук, доц.; rvoronov@petrsu.com

Вестник СПбГУ. Прикладная математика. Информатика... 2023. Т. 19. Вып. 2

