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The article considers the Navier —Stokes evolutionary differential system used in the
mathematical description of the evolutionary processes of transportation of various types
of liquids through network or main pipelines. The Navier — Stokes system is considered in
Sobolev spaces, the elements of which are functions with carriers on n-dimensional network-
like domains. These domains are a totality of a finite number of mutually non-intersecting
subdomains connected to each other by parts of the surfaces of their boundaries like a
graph (in applications these are the places of branching of pipelines). Two main questions
of analysis are discussed: the weak solvability of the initial boundary value problem of
the Navier —Stokes system and the optimal control of this system. The main method of
research of weak solutions is the semidigitization of the input system by a time variable,
that is the reduction of a differential system to a differential-difference system, and using
a priori estimates for weak solutions of boundary value problems to prove the theorem of
the existence of a solution of the input differential system. For the optimal control problem
a minimizing functional (the penalty function) and a family of the approximate functional
with parameters that characterize the “penalty” for failure to fulfill the equations of state of
the system are introduced. At the same time, a special Hilbert space is created, the elements
of which are pairs of functions that describe the state of the system and controlling actions.
The convergence of the sequence of such functions to the optimal state of the system and
its corresponding optimal control is proved. The latter essentially widen the possibilities
of analysis of stationary and nonstationary network-like processes of hydrodynamics and
optimal control of these processesd.

Keywords: evolutionary Navier — Stokes system, network-like domain, solvability, optimal
control, penalty functions.

1. Introduction. The method of penalty functions is considered, which is enough
effectively used in solving the problems of optimization of stationary problems of an applied
character [1, 2]. For the analysis of nonstationary problems, this method takes into account
information about the equation of state [3, and bibliography there]|, the basis for the use
of which was the need for computing problems. The method of the penalty functions is
set out on the example of the problems of optimal starting and distributed control of the
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Navier — Stokes system, which are meet in practice, but it is a general method and is
used with minor changes in other optimal control problems [4-8]. In the first case, control
determines the initial condition of the system, in the second case, control determines the
density of external forces of actions on the system; in both cases, the physical problem is
to obtain a given vector velocity field at a given final point in time.

2. Designations and concepts. In Euclidean space R™ n > 2, consider the bounded
domaln , consisting of subdomains ; (I € In = {1,2,..., N}), pairwise connected by M,
1 M < N - 1 the nodal places w; (j € Iny = {1,2 LMY): § = SUw, where

UJ ijandozﬂsl: (A1), wiNwy =0 (G #5), SiNw; = 0.

Such a domam Wlll be called network-like [9, 10]. The subdomains & in the nodal places
have common boundaries in the form of adjoining surfaces. For fixed 7 € Ij; the nodal
place w; is determined by a set of the adjoining subdomains. Namely, each ﬁxed the nodal
place w; (j € Ip) is adjoined by m; the domains 3y, I, € In(j {ll,lg, . } C Iy,
t = 1,m;, its parts of the boundaries 9%, Wthh are des1gnated through SJL C 0%,

(meas Sj, > 0), ¢ = 1,m,;, in addition S; = S; = U S .. Thus, the nodal place w; is the
=2

branch locus of the domain & and is characterlzed by the surface S;. The boundary 0¥

the domain < is defined by the ratio 03 = U 031\ U S;. Everywhere below we consider
=1

the adjoining surfaces S;; smooth, subdomains &; — star shaped relative to some ball, its
own for each .

Note that the domain S is structured by analogy with the geometric graph-tree [9].
Each subdomain S; at a particular nodal place may be adjoin to one or rather other
subdomains, while having one or more adjoining surfaces (for a graph, analogues of nodal
places are nodes of conjugation with other edges). Note also that any subdomain of domain
S can have a network-like structure with its own number of nodal places.

Further, the issues of formation and analysis of a mathematical model of transporta-
tion of viscous liquids through complexly structured carriers, which in the applications are
different types of pipeline networks, are considered.

For functions Y (z,t) = {y1(z,t),y2(z,t), ..., yn(z, 0)}, z,t € S = S x (0,T) (x =
{z1,22,...,2n}, T < 00) consider the system

—vAY + Zng;/ f — gradp, (1)

i=

divy =0 <ZZ & = 0) (2)

Determine the conditions for adjoining the subdomains of the domain & by the ratios

Y(xat)|wESjLC8%ll :Y(xat)|IESjLC6§LL, L= 27mj7 (3)
DY (1) G oY) 4.
S'f on; ds + L:ZZSf ong, ds =0, (4)

i D
on the surfaces S;, S;, (¢ = 1,m;) of all nodal place w;, j =1, M, and at t € (0,T). Here
vectors n; and nj, are external normals to S; and Sj,, respectively, ¢ = 1,m;, j = 1, M.
Initial and boundary conditions are determined by the relations

Y(z,t)|i=0 = Yo(z), €S, (5)
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Y (2,t)scos = 0. (6)

The relations (1)—(6) define the initial boundary value problem relative to the func-
tions Y'(z,t), p(z,t) (hereinafter the differential system (1)-(6)) in a closed network-like
domain Sz (S7 = (FUIS) x [0,T)).

In applied questions of mathematical modeling of the processes of transportation of
viscous liquids, the network-like domain & at n = 3 belongs to Euclidean space R? and
models a pipeline network of complex structure or a main line hydraulic system, being
a carrier of hydraulic flow (multiphase medium). The function Y (z,t) characterizes the
vector of flow speed in 7, equations (1), (2) define the Navier — Stokes evolutionary
system, which simulates the flow of a liquid with viscosity v > 0 on the carrier &, the
ratios (3), (4) determine the law of flow of fluid flows at the places of branching of the
carrier &, p(x,t) is pressure.

Remark 1. It should be noted that one could use other adjoining conditions, for
example,

A oy (e A Y@
Y|s].— :Y‘s;ﬂ 22 39)\S;L+Z ()‘s+ =0,

nj/.

S5 S;“ and 57, Sj are one-sided surfaces for Sj, S;,, and nj,, njt are their corresponding
normals [11]. The choice of representation of the condltlons of adjoining is at the disposal of
the researcher and is determined depending on the pursuit purposes. A natural requirement
that must be satisfied is the requirement of solvability of the obtained problem, as well
as the preservation of the theorem of uniqueness, if the latter corresponds to the spirit of
applied research.

3. Solvability of the Navier — Stokes system. The analysis of the solvability of
the differential system (1)—(6) is based on the study of the differential-difference system

of the form

1Y (k) =Y (k—1)] — vAY (k) +
£ Vi) 2 = £, (k) — gradp(k), ™
i=1
divy(k) =0, k=1,2,... K, y(0) = Yo(), (8)
Y(k)‘IGQS =0, k=1,2,.. K, (9)

where the following notations are used: 7 = T/ K is the step of dividing the Segment [0,T]
with the dots kT (k=1,2,... K—-1); Y (k) := Y (x; k) Y(k) =LY (k)-Y(k-1)], f-(k) :=

fr(z; k) = f f(z, t)dt and p, (k) := p,(2;k) = f p(x, t)dt (k=1,2,....K).
(k 1)) (k 1)
Let denote through L2()™ the space of the real Lebesgue measurable vector-function
u(z) = {ur(z,t), u2(z, t), ..., un(z,t)}, x = (xl,xg, vy Tp) € R” The scalar product and
the norm in Lo ()™ are deﬁned by the equations (u,v) = [wu(z)v(z)dz and ||[u| = \/(u,u),

respectively (here f o(x)dz Z f ¢(z)dz). Next, let D(J)™ is the space of infinitely

differentiable functlons with compact carrier in & and D(S)" = {¢ : ¢ € D(Y)", diveg =
0}. Space H(S) is defined by the closure D(J)" in Ly(S)", and space H!(J) consists of
functions ¢(z) € H(S) having generalized derivatives @ € L2(3)™. The scalar product
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and the norm in H'(S) are defined by the equations (u,p), = (u,p) + (%, %) and

lloll, = (H¢|| + 1821 ) , respectively. To describe the state space of the differential-

difference system (7)—(9) we introduce space V{}(S) as a closure in space H(3J) of a set

of elements ¢ € D(I)" satisfying the conditions f m) ds + Z f ¢(m ~ds = 0.

The analysis of the differential- dlﬂerence 5ystem (7) (9) is preceded by consideration

of two differential forms p(u,v) = Z Ik g’;’_ g;’_ dz, plu,v,w) = Z [ u g“l w;dz, linear
igj=1g " i k=1%

for each of their fixed elements u, v and w. The entered forms are defined on the functions
u, v and w, for which integrals 6uf 8”’ “dz and f up a“‘ widx converge.

Further discussion will require the followmg statements (see also [3, p. 88]).

Lemma 1. The differential form p(u,v) is continuous by u, v on V() x V3 (J), the
differential form p(u,v,w) is continuous by u, v, w on Li(3)" x VE(F) x Ly(I)".

Lemma 2. For arbitrary u, w of space Vi () there are equalities:

1) ﬁ(uvuvw) = _ﬁ(uvwvu)a

2) ﬁ(u7w7w> =0,

3) plw,w,w) =0.

Lemma 3. If the sequences {um m>1, {Vm}m>1 weakly converge in L2(3)™ to u and
v, then the sequence {Uumvm }m>1 weakly converges in La(S)™ to uv.

The following approach for analyzing the weak solvability of the system (1)—(6) is
based on the construction of a priori estimates of the solutions of the differential-difference
system (7)—(9) and use of the Galerkin method, which assume look for functions Y (k) €
Va(S), k = 1,2,.., K, in the form of expansions on a special basis of space V{($) —

the basis in the spaces V() and La(S)™ (proof similar to ;epresented in the work [12,
p. 96]).

Remark 2. Can be replaced the boundary condition (6) with a more general & 8U +
oU|ss = 0, where the constant ¢ is her for each subdomain & C S, ‘3— is the derlvatlve
of normal n to the surface 9. The spectral problem in this case is considered in the space
V1(S), the elements of which differ from the elements V() by the absence for them of

the condition of equality to zero on the boundary 0, the integral identity takes the form
n
vy, (%, %) + o(U,n)aos = MU,n) Vn(x) € VE(S), here (-, -)ag is scalar product on
i=1 ‘ ‘

0. The properties of spectral characteristics remain invariable.

Let us turn to the issue of constructing a priori estimates of the weak solution of the
differential-difference system (7)—(9).

Let the initial data of Yy(z), f(z,t) of the differential system (1)—(6) satisfy the

conditions of Yy(z) € V§(S), f(x,t) € La1(St)™ (the space Lo (S7)" consists of all
T
elements u € L1(S7)"™ with a finite norm |ull, , = [([ u(z,t)2dz)'/2dt. The latter means

0 <
that for the differential-difference system (7)-(9) the original data Yy(z), f,(k) are the
elements of V}(S), La(S3)™, respectively.
Definition 1. The set of functions {Y (k) € V}(S), k = 1,2,..., K} for which Y (k)
satisfies the ratio

(Y(k>t777) + Vp(Y(k)fI]) + ﬁ(Y(k), Y(k)777) = (f.,—(k)7’l7), Y(O) = YO(‘%% (10)
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for fixed k (k = 1,2,..., K — 1) and arbitrary function n(z) € V(S) is called the weak
solution of the differential-difference system (7)—(9).
Taking into account basis property of the set of generalized eigenfunctions {U;(z)}i>1

in space V$(3), to determine the approximations Y, g of the functions
0 %, m

Y(k), £k = 1,2,..., K, of the weak solution of the dlfferentlal difference system (7)—(9)
consider the system

Yo (k)e, Us) + vp(Yin(k), Us) + p(Yo (k), Yo (k), Ui) = a
= (fr(k),U;), i=1,2,..,m, k=12 .,K,
Y (0) = Yom(2), (12)

where Yo (x) = > 9 Ui (z) (¢2,, is const), Yo, (z) — Yo(z) in norm H1(SJ).
=1

First, we get a priori estimates of the norms of functions Y (k), k = 1,2, ..., K, through
the norms of the initial data Yy(x), f-(k).

Theorem 1. When Yy(z) € VE(Q), f-(k) € Lo(9)" (k = 1,2,..., K) for Y, (k),
k=1,2,..,K, of the system (11) occur

D YOl < VO]l + 2Bl
2 ¥R + 270 3 (259012 < € (1902 + (1 () )2)

k=1

with a constant C' independent of T, || fr(k )||2 =T Z If-(ED||, k=T1,K.

P r o o f. From the ratio Y(k — 1) = Y (k) — TY(k:) follows 27(Y (k),Y (k):) =
Y?2(k) + 7Y (k)7 — Y?(k — 1). Multiply the ratios (11), (12) by 27¢f,, and sum by i from
1 to m, we get

Yr?t(k) - Yn21(k - 1) + TQYr?L(k)t + 2TVP(Ym(k)7Ym(k)) =
= 27(f, (k), Y (K)), k=1,2,.... K,

taking into account p(Y,(k), Y (k),Ym(k)) = 0 (lemma 2, statement 3), where the
inequalities

2]
I = Wl = DI 5 2 1 4 2| 2 < 3
<27 (R)Ym(B) |,k =1,2,..., K,
and their obvious consequences
Yo (R)II* = [V (k = DI < 27| £ (B) Vi (B, * = 1,2, K, (14)
come from. v
Let ||V (k)| + ||V (k — 1)|] > 0. Taking into account HYm(kyl\ril(Y,)Jl(kfl)H < 1 and
dividing the ratio (14) by ||V (k)| + ||[Ym(k — 1)||, we come to inequalities
Yo ()| = [V (k=D <27 f-(R)[l, k= 1,2, K. (15)

If |V (B) ||+ || Yo (k—1)|| = 0, then from the ratio (14) follows 0 < 27| f (k) || | Yo (K)||
and Y (B) |2 — [V (k — DI < 27 fo B [¥im (), b = 1,2,..., K, we come again o
(15).
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Summing up the inequalities (15) by k' from 1 to k, we finally get the first estimate
in the statements of the theorem:

k ’
Yo B < WO +2 3 712l = "

= Yol + 20 (B)llyys B=1,2, . K,

where ||f7(k)||/21 =3 7lHEI (- H/Zl is “semi-discrete” analogue norm || - ||2,1 of the
k'=1
space Lo 1(S7)").
Summing up the inequalities (13) by k' from 1 to k and using estimates (16), we come
to the second estimate in the statements of the theorem:

o
Vo (R)||? + 270 Z 12D 12 1y, (k)12 +
kK =
3> |\Ym<k>tu2+2w 5 |12l < (17)
k'=1 '—1

k=
C (1%l + (1 (B)20)%) 5 b= 1,2, K,

where the constant C' depends on v, T' and not depend on 7.

Remark 3. The a priori estimates presented by the statements of theorem 1 (see
(16), (17)) are the basis for obtaining the conditions for the solvability of the differential
system (1)—(6).

Let move on to the analysis of the differential system (1)—(6) and, above all, introduce
the necessary functional spaces. Denote through W1%(Sr) a space whose elements u(z, t)

Ou(x,t)
Ox

together with their generalized derivatives belong to La(S7)", [lullyrog,) =

1/2
<||u|\ + 1124 ) . Let further W1(Q7) is a space whose elements together with their

1/2
derivatives %, % belong to La(I7)", [lully1(g,) = <||u|\ + || By H + (124 ) .

The spaces W9(Sr) and W (Sr) have the following general properties: 1) their elements
are continuous in the norm Ly ()™; 2) traces of their elements on sections St by planes
t = to (here ¢y is a arbitrary number of intervals (0,T)) are elements of Ly(S)™. Next,
we introduce two sets Q1(S7) € WHO(Sr), Q2(S7) € WHS7) so that their elements
under fixed t € (0,7) belong to V}(S). The closure Q1 (S7), Q2(S7) in the corresponding
spaces W1 O(JT) WHS7) denote by Wy (S7), Wh(S7). From what has been said follows

w(z,t)|os = 0, if u(z,t) € WH%(Sr) or u(x,t) € Wh(S7). As above, we take that
Yo(x) € Vol(%), flz,t) € Lo (S7)™.

Definition 2. A set

{V(x,t),plx,t): Y(z,t)e Wy (Sr), plx,t) e C(S7)}
is called a weak solution of a differential system (1)—(6), if Y'(x,t) satisfies the relation
- f Y(x T)an(m- dxdT+pr Y,n) dT—!—prYn)d
—fYo deJE—FffZ‘T (x,T)dde
Sr

for an arbitrary function n(z,t) € Wi(Sr), n(z,T) = 0.
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Remark 4. By virtue of definition 2 for a function p(x,t) it is necessary that the
relation (grad p(x,t), n(x,7)) = 0 at any n(z,t) from W}(S7). The latter is possible, for
example, when p(x,t) it belongs to the class C'(Sr). Note also that in many application
problems of continuum transport, the function p(z,t) refers to the input data, therefore
its existence not depend on the existence of the function Y (z,t) € W (37).

Next, the question of the weak solvability of the differential system (1)-(6) is
considered [13] (see also [12, p. 189]).

Theorem 2. The fulfillment of the conditions Yo(z) € VI(S), f(x,t) € La1(S7)"
guarantee a weak solvability of the initial boundary value problem (1)—(6).

P r o o f. Based on the solution {Y (k) € V§(S), k = 1,2,..., K} of the differential-
difference system (7)—(9) , we introduce a function Y (z,t) of the form Yk (x,t) = Y (k),

€ ((k—=1m k1], £ =1,2,...,K, Yig(x,0) = Yy(z) (piecewise constant interpolations
by a time variable ¢ for Y (k)). Belonging u (z,t) to space Wy (S7) is obvious. For the
function ug (x,t) the estimates of theorem 1 are valid (inequalities (16) and (17)) and,

consequently, the inequality
Vil + 122 < C* (19)

is correct for it, a constant C* > 0 independent of 7. A similar representation through
f(z;k), k = 1,2,..., K, has the function fx(z,t): fix(z,t) = f(x;k), t € ((k— )T, k7],
k=1,2,..,K. Let K — oo (1 — 0), then it follows from inequality (19) that from the
sequence {Yi (x,t)} can be distinguish a subsequence {Yx (z, t)} that weak converge to the
element Y (z,t) € W°(S7). Let us show that Y (z,t) is the weak solution of the differential
system (1)—(6). To do this, we will establish that Y (z,t) satisfies the identity (18) of
definition 2 for any n(x,t) € C*(374,)", which satisfies the conditions for adjoining (3),
(4) under any ¢ € (0,7) and for which the conditions are met 1|as, = 0, Nlie(r, 747 = 0.
Functions 7(k) are defined by n(z, t) using the equals n(k) = n(x, k1), k = 1,2, ..., K, while
n(k)y = Lin(k+1)—n(k)] (difference relations n(k)y, n(k); = L[n(k)—n(k—1)] are the right
and left approximations g—;’ t = k7, respectively). As for Yk (z,t), by functions n(k) are
formed piecewise continuous by the time variable ¢ the approximations ng (z, t), M of

the functions n(z, t), %, w Note that nx (z, ), 8""875;“”7 M evenly converge

on St to n(wz,t), %, W at K — oo, respectively; ng (z,t) = 0, tel[T, T+ ]

In the integral identity (14) the function n(z) substitute for 7n(z) = mn(z; k) and sum
it on k from 1 to N, we get

[V (bt~ [ Yan(R)da -+ 3 7ol (k)0 +
k=1g N k=1 (20)
5 TR Y (009 = X 7 [ 100
taking into account the ratios

TkZiilY(k)m(k’) -7 k]zj:1y(k)n(k)t - Y (0)n(k), n(N) =n(N+1)=0.

From the relations (20) it follows directly

— [ Yr(x, t)nk (z,t)idzdt — [ Yo(z,t)n(z, 7)dx + pr(YK,nK)d—i—

S & 0
T (21)
f (YK,YK,’I]K dt f fK $ t)’l]l(($ t)dl‘dt
0 ST
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Passing in (21) to limit by the subsequence {Yx(z,t)} and taking into account the
statement of lemma 3, we get the identity (18) of the definition 2 of the weak solution of
the differential system (1)—(6). The theorem is proven.

For the vector-function Y (z,t) = {y1(z,t), y2(x,t), ..., yn(x,t)}, z,t € S, can consi-
der a linearized Navier — Stokes system, where equation (1) is

—vAY +gradp = f. (22)

The systems (22), (2)—(4) and its corresponding initial boundary value problem (22),
(2)—(6) in the hydrodynamic theory of transfer processes determines the mathematical
model of the laminar flow of a viscous fluid over a network carrier that is described by the
domain Sp.

All the above concepts, definitions and statements are completely preserved it is

necessary only in the ratios (7), (10) and (18) to remove the expression Z and the

i 8a:
form p(Y,Y,n) (statements of lemmas 1-3 for the form p(Y,Y,n) are not used)

4. The method of penalty functions in the analysis of optimal control
problems. Let’s denote through U the Hilbert space of control v, then Wt’o(%T) is the
space of state Y (v) of the Navier — Stokes system. In addition U = Lo(3)™ or U = Ly (S7)"
and therefore v := v(z) € La(¥)"™ or v := v(x,t) € Ly(S7)" for the problem of optimal
starting or distributed control, respectively.

Observation of the state Y (v) of the system is carried out at the final point in time
(other types of observations are possible). On a closed convex subset Uy C U the requiring
minimization functional

= [(Y(0)(2,T) — 20(x))* dz + (Nv,v)y, (23)

Ry

where zp(x) is given function of space Ly(S)™, N : U — U is a linear continuous Hermite
operator, (Nv,v)y > §||v||[?J (¢ > 0 is fixed constant).
The problem of optimal starting (distributed) control of the Navier — Stokes system
in space W§5°(Sr) is to find iélg J(v), the element u € Uy is the optimal control of the
v e}

Navier — Stokes system, which is considered knowingly (a priori) to exist: ing J(v) =
velUyp

J(u).
Let’s denote through Y the set of elements Y (z,¢) € W §°(Sr) such that

—fYO dem—fY da:dt—l—uprndt—&—prYn)d:
= f F(x, t)n(z, t)dxdt—i— f (a: t)dzdt, w(z, )€L271(JT),

for any n(z,t) € W(S7), n(z,T) = 0. For the elements Y we introduce the norm

2 2 2 1/2
¥l = (1 Bsocony + 1002, o + IV C0)20)

thus
Y:{Y LY e WEAST), we L1 (S7), Y(at),_, € Lg(s)} .

The state of the system (1)—(4) is determined by the initial boundary value problem
(1)—(6), moreover in the case of starting control, the control effect v(z) determines the
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initial condition (5), i. e. Yp(«) := v(x), and in the case of distributed control, the control
effect v(x,t) determines the right side of equation (1): F(x,t) := v(x,t).
The optimal starting control. The initial condition (5) of the system (1)—(6) is
replaced by
Y(x,t)|,_g=v(z), v€S, (24)

thus, the state Y (v) of the Navier — Stokes system is characterized by the initial boundary
value problem (1)—(4), (24), (6) and U = La(X)™.
Let € = (e1,€2,64) > 0, ¢ = 1,2, and granting (23) define on Y x U the functional

T (Y, v) = [ (Y (2, T) = 20(2))* dz + (N, v)y +

35 2 (25)
+ % lw="Flz, (om+ é!(Y(m,O) —v(z))” dx,

named in the literature penalty function [3, p. 395]. Multipliers 1/e1, 1/eo characterize
fines if the ratios (1) and (5) are not satisfied.

Consider an auxiliary problem with a parameter ¢ = (g1, e2) (family of problems)
of finding ve inf v Je(Y, v) on Y x U, approximating the search problem Uienga J(v) and

, vels

assume that there exists a pair {Yz, ve} for which  inf  J.(Y, v) = J2.
YeY, vely

Theorem 3. Under the assumption that the solution {Y., uc} to the problem of
finding y Yinf Jo(Y, v) does exist, takes place
€

, vely
JS — J(u), (26)
ve = u in the norm space U, (27)
Y. > Y(u) in the norm |- |y (28)

at € = (g1, €2) — 0.
P r o o f. As mentioned above, the element u € Uy is the optimal control of the
Navier — Stokes system, that means ing J(v) = J(u) = J° and for the state Y (u) (solving
velsp

the initial boundary value problem (1)—(4), (24) and (6) at v(x) = u(z)) the relations (1),
(24) and (6) are satisfied. From the latter and the representation (25) of the functional
Je (Y, v) follows inequality

Je(Ye, ue) < J(Y(u), u) = J(u) =J°. (29)

From the estimate (29) follows the boundedness J.(Yz, uc) for the arbitrary € = (£1, €2)
and, using the expression (25), we come to inequalities

Je(Ye, ue) > §||u€||[?j7

2 2
Je(Ye, ue) 2 i lwe — F||L2y1(%fr) + é fg (Ye(2,0) — ue(x))” da,

of which follows

[uelly < C, (30)
lwoe = FllL, a0y < CVEL 31
1Y=(-,0) - uEHLZ(%) < Cyey, (32)
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where the constant C depends on the value J°. From the ratios (30)-(32) it follows
that with ¢ — 0 a set of functions u.(z) bounded in U = Ly(J)™, a set of functions
we(z,t) — F(x,t) is bounded in Ly 1(S7)", a set of functions Y;(z,0) is bounded in
Lo(S)™, it means a set of functions Y (z, ¢) is bounded in W §°(S7) and Y. It follows that
from a sequence {Yz(x,t), uc(x)} can be extracted a subsequence (let’s leave the same
notation {Yz(x,t), uc(z)} for it) for which Yz(x,t) — Y weakly converges in W §"(S7)
and u.(x) — @ weakly converges in U = Ly(3)" (@ € Up). Thus, passage to the limit
by subsequence leads to the relations @(z,t) — F(x,t) = 0, Y(-,0) = @, which means
Y (z,t) = Y(x,t; @).
From the ratio (25) follows

J(Yerve) 2 [ (Yel@, ) = 20(@))* da + (Nve,v2), (33)

moreover Yz (x,T) weakly converges in Lo ()" to Y (z,T), and then from inequality (33)
- 2
follows inequality lim J. (Yz,v.) > [ (Y(x,T) - zo(x)) dx + (N4, a)y or lim J. (Y, v:) >

J(u). The latter, together with the relation (29) means that @ = u and the correctness of
the statement (26) of the theorem, hence the statements (27), (28), is valid in the sense
of weak convergence.

Let us show the validity of the statements (27), (28) in the relevant norms, that is, in
the sense of strong convergence. Let’s present the functional J.(Yz,v.) in the form

Je(Ye,ve) =0: + 9. — 2 [ Ye(2,T) 20(x)dx + [ 23(x)dz,

S

here 6, = fg Y2(x,T)dr+ (Nue, us)y, 9 = é [lwe — FHiz’l(gT)—i—é IYz(-, 0) — u6||12(%).
By virtue of

Je(Ye,ve) > J°=J(u) =0 -2 [Y(2,T) zo(z)dx —|—E[zg(x)dx,

Ry

where 6 = fs Y?2(x,T;u) dx + (Nu,u)y, it should be 6. + 9. — 6. Hence, given lim 6. > 6,
we get ¥, — 0, what means v. — u in the norm of space U, and 6. — 6, which means
Y. — Y (u) in the norm || - ||y: the validity of the statements (27), (28) is established, the
theorem is proved.

Remark 5. From the reasoning it follows that the estimates (30)—(32) are valid for
an arbitrarily small constant C' and for sufficiently small €1, €5.

The optimal distributed control. The method of penalty functions for the analysis
of the problem of optimal distributed control of the Navier —Stokes system (1)—(4) it
remains invariable, the equation (1), the control space U, the space is slightly changed
and functionality J.(Y, v). The equation (1), the control space, and the space are slightly
modified. Namely, equation (1) is replaced by

%—VAY—F ;E% + gradp = v(x,t), (34)

U = Ly(S7)™, v(x,t) € U, functional J.(Y, v) take the form
J.(Y, v) = [(Y(2,T) - zo(x))” dz + (Nv,v)y +

\)“2 2
+ 2w —vlln, (o) + = S (V(@,0) = v())” da,
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the state Y (v) € WB’O(QT) of the Navier — Stokes system is determined by the systems
(5), (34). Further reasoning almost verbatim repeats the above.

5. The method of penalty functions for the linearized Navier — Stokes
system. In the previous case, when the nonlinear Navier — Stokes system was considered,
the analysis of optimal control was limited to obtaining the necessary conditions for a
minimum of functional (the penalty function) under the supposition of the existence of
optimal control. The case of the linearized Navier —Stokes system by favorable to the
obtaining of the necessary and sufficient conditions, since additional properties of the
linearized system are used along this way, it is possible to prove the existence of a unique
optimal control. We show this on the example of starting control.

For a linearized Navier — Stokes system (2)—(4), (22) the state of which is defined as
a weak solution in the space W §"(37) of the system

9 _ VAY +gradp = F(z,t) (35)

with the condition (24) (v(z) € U = La(S)™ is control effect), the problem of optimal
starting control is considered.
For this case, the statements of Section 3 remain valid, with the only difference that
n
they do not contain the expression »_ Yi% and its form (Y, Y, n). The introduced above
i=1 ‘
functional J(v), auxiliary space Y and functional J.(Y, v) are also preserved, where the

n
expression Y Yi% and its form p(Y, Y, n) are also absent. A essential difference from the
i=1 ‘
previous consideration is the possibility to establish the uniqueness of the solution of the
optimal starting control problem (problem ing J(v)) and the uniqueness of the auxiliary
vels
problem with the parameter ¢ = (g1, €2) search for y Yinf Y Je(Y, v), approximating
cY, velsp
problem inf J(v).
velUp

The uniqueness of the solution of the problem ing J(v) is a consequence of the
velUsp

following statements, similar to those proven in the work [14].

Theorem 4. The operator of the transition from control v(z) € U = Lo(I)™ to
Y (v) € W%(Sr) continuous.

Theorem 5. The problem of optimal starting control has a unique solution.

The proof of the statement of theorem 4 uses the linearity of the operator of the
problem (35), (24) and the a priori estimates given in theorem 1. The statement of
theorem 2 is based on the property of coercivity of the homogeneous part of the second
degree of the quadratic form of the functional J.(Y, v) and the statement of theorem 4.

The uniqueness of the auxiliary problem v %nf U Je(Y, v) is established by the
cY,vely

following statement.

Theorem 6. The problem  inf  J.(Y, v) has a unique solution.
YeY,velUy

P r o o f. For the functional J.(Y, v) (absent the expression Y Yfgf_), consider the
~ ;

1=

part containing the second degrees:

QE(K U) = IYQ(‘T7T)dI + (NUaU)U + é ||w - FHizl(%T) + é fYZ(Iv O)dl'

Note that
2 2
a.(, v) > C (V13 + o)) (36)
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Indeed, given the inequality (Nv,v)y > g||v||% (¢ > 0), we come to inequality
g=(Y, v) = (s + ) ol§ + [ Y (@, T)de + L [ Y2 (x, 0)dz +
o lwl?, om — & Iy 1Y 0z, (o) s

from which we get inequality (36) with a constant C, dependent on &1, €3. The proof
complete with the statement of the theorem 1.1 [15, p. 13].

Repeating the reasoning given in the proof of theorem 3, we come to the conclusion:
1) there is a unique solution to the problem of optimal control; 2) a necessary and
sufficient condition for the existence of optimal control is the presence of a sequence
of pairs {Y, v.}, for which with each sufficiently small ¢ = (e1, e3) pair {Ye, v.} it
realizes YEYin£ cu, Jo(Y, v). This sequence contains a subsequence that weak converge to

the optimal pair {Y (z,t), u(z)} (the solving of the problem of finding ing J(v)).
velUa

6. Conclusion. The approach presented in the paper explain on the example of
the problems of optimal control of the Navier — Stokes evolutionary system with a spatial
variable changing in a network-like domain. The penalty function method used in this case
is a fairly general method. It can also be used (with minor modifications) to analyze the
optimal control problems of stationary Navier — Stokes systems (linear and linearized). The
effectiveness of this method essentially increase in connection with the needs of computing
tasks of applied nature [16-18]. Note at the same time that the method of the penalty
functions can be effectively applied to the numerical solution of the optimization problem
in various areas of natural science (see, for example, work [19]).
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Wsyuaerca sBostonmonHast nauddepennuaibias cucremMa Hapbe —CToKca, mcnosib3yeMast
IIpu MaTeMaTUIECKOM OIIMCaHMHN SBOJIIOIIMOHHBIX IIPOIECCOB TPAHCIIOPTHUPOBKHU PAa3HOI'O THU-
IIa )KI/IJ.LKOCTGI’?‘I II0 CeTeBbIM NJIN MalruCTpaJibHBIM pr6OHpOBOJ_I‘aM. CI/ICTeMa Hasne — CTOKCa.
paccmaTpuBaercst B mpocTpancTBax (CobosteBa, 37eMEHTBI KOTOPBIX — (DYHKIIUUA C HOCHUTE-
JIAMHA Ha N-MEPHBIX CeTeHO,ZI;O6HI>IX 00J1aCTAX. 9TI/I 00J1aCTH €CTh COBOKYITHOCTb KOHEYHOI'O
4YHCJIa B3AMMHO He II€PECEKAIONIUXCs I10/100JsIacTell, COeIMHEHHBIX JIPYT C JAPYTOM YaCTsSIMHU
IOBEPXHOCTEHN CBOMX TPAHUIL IO TUILY Tpada (B MPUJIOKEHUSX: MECTAaX BETBJIEHUS TPYOOIIPO-
BO,D;OB). O6Cy2KIaI0TCsl JIBa OCHOBHBIX BOIIPOCA aHAJM3a: cjiabasi pa3penmMOCTb HAYAJIbHO-
KpaeBOfI 3aJJa49U JJId CUCTEMbI Hasbe — CTOKC& " OIITUMaJIbHOE yIIpaBJICHUE 9TOIT CUCTEMOIA.
OCHOBHLIMI/I METOJaMMU UCCJIEJOBaHU A c.na60171 Pa3peuInMOCTU ABJIAIOTCH IIOJIYAUCKPETU3 AU A
HMICXOJIHOM CUCTEMBI 110 BPEMEHHOI IepeMeHHOM, T. €. peayKims quddepeHnajlbHOl cucTe-
MBI K JuddepeHInalbHO-PA3HOCTHON, U HCIOJb30BAHNE AIIPUOPHBIX OIEHOK It CJIabbIX
pemeHHf/i KPaeBbIX 3a/1a4 IPU JOKa3aTE/JIbCTBE T€OPEMBbI CyIIeCTBOBAHUA PENICHUA I/ICXO,I[HOIL/'I
muddepeHnnaabHOi cucreMbl. s 38184 ONTUMAJIBHOTIO YITPABJIEHUST BBOJSATCS MUHUMU-
supyromuit GyHKuonas (dyHKIHs LLITpa(ba) ¥ alIPOKCUMHpPYIOIIee ero ceMeicTBO BCIO-
MOTATEJBHBIX (DYHKIIMOHAJIOB C TapaMeTpaMM, KOTOPhle XapaKTEePU3yIT mTpad 338 HEBbI-
[IOJIHEHUE YPaBHEHUWI COCTOsIHMS cUCTeMbI. IIpw 9TOM BBOAMTCS crenuabHOEe I'MJILOEPTOBO
IIPOCTPAaHCTBO, JJIeMEHTaMi KOTOPOTI'O ABJIAIOTCHA ITapbl (i)yHKLLI/Iﬁ, OIIMCBIBAIOIINUX COCTOAHUE
CUCTEMBI U yIIPaBJIAIOIEe BO3,ILQIZCTBHH. ﬂOKaBLIBaeTCﬂ CXOOUMOCTD ITIOCJIEJOBATEJIBHOCTHU Ta-
KX PYHKIUH K ONTAMAJILHOMY COCTOSTHUIO CUCTEMBI i €My COOTBETCTBYIOIIEMY OIITUMAJIHLHO-
My yupasienuto. Ilociensee cymecTBeHHO pacIIupsieT BO3MOXKHOCTH aHAJIN3A CTAIMOHAPHBIX
1 HECTaITMOHAPHBIX CeTeHO,Z[O6HI)IX IPOIECCOB TUAPOAVNHAMUKA U OIITUMAJIBHOTO YIIDABJICHU A
nMHA.

Kamoueswie caosa: sBomonmnonHast cucrema Hasbe — CTokca, ceremnomobrast 001acThb, pa3pe-
[IAMOCTD, OIITUMAJIbHOE yIIpaBjeHue, mrpadHbie (pyHKIUN.

KourakraHas madopmanus:

Kabro Hamanaus Anexceesna — Kauz. (pus.-mMar. HaykK, 101.; zhabko.apmath.spbu@mail.ru
Kapeaurn Baadumup Bumanavesuy — xaum. dus.-mMar. Hayk, mo1l.; vikarelin@mail.ru
IIposomopos Bsauecnas Bacuavesuyw — 1-p dus.-mMaT. HayK, npod.; wwprov@mail.ru

Cepzees Cepzeti Muzatinoguy — KaHJ. TEXH. HAYK, JOIL.; sergeev2@yandex.ru

Becrauk CII6I'Y. Ilpuknagnas maremaruka. Uadopmaruka... 2023. T. 19. Beim. 2



