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The optimization approach is applied to the synthesis and optimization of nonlinear real-
time feedback optimal control system of a certain Maglev platform. To optimize the nonlinear
control law, the integral functional criteria is minimized, which evaluates the quality of the
dynamics of not one trajectory, but an ensemble of nonlinear trajectories of the system. The
considered ensemble of trajectories covers the entire area of the engineering gap between the
platform and the guide rails. In this area the magnetic forces provide highly nonlinear effects
due to the considered design features of the object. At the same time, it is required to provide
the stabilization within the entire engineering gap. It makes this statement to be a multi-
input nonlinear control problem. The components of the feedback control law vector have
a polynomial form of the state-space variables. As a result of computational optimization
of trajectories ensemble, a class of Pareto-optimal polynomial regulators is constructed for
considered control object. In the presented set, each Pareto-optimal point corresponds to a
specific designed controller and investigated functional criteria which evaluates the entire
ensemble of perturbed nonlinear trajectories. This allows a research engineer to choose
various nonlinear regulators and achieve a compromise between stabilization accuracy and
energy costs.
Keywords: nonlinear system, stabilization, nonlinear regulators, Maglev, real-time feedback,
ensemble of trajectories, optimization.

1. Introduction. The development of nonlinear controller design for nonlinear sys-
tems is a relevant problem for various theoretical and practical studies. The paper de-
velops a parametric optimization approach that extends the capabilities of existing tools
and methods for the regulators constructing. Previously, this approach has been success-
fully used in solving problems of analysis and synthesis of stabilizing regulators for plasma
shape and current in tokamaks [1, 2]. In that researches the linear systems have been
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investigated. A variety of examples of objects can be covered by parametric optimization
[3, 4]. It should be noted that the optimization approach based on the use of an ensemble
of trajectories and the quality functional specified on these trajectories is widely used in
solving other problems. In particular, these are problems of electrodynamics [5–7] and
image processing in the reconstruction of the velocity field [8–10].

Magnetic levitation or Maglev is a modern technology that uses directed upwards
magnetic forces to balance the dominant downward force of gravity. It was applied to a
wide range of fields in science and technology starting with hanging a small laboratory-
scale object and finishing with large-scale transportation applications like Maglev vehicles
suited to carry huge weights at speeds up to several hundred kilometers per hour.

There are two common suspension system designs widely used for Maglev vehicle
applications. The first one is named an electrodynamic suspension (EDS) system and uses
the repulsive force created by magnets moving relative to electrical conductors. The other
one is named an electromagnetic suspension (EMS) system and uses the force of attraction
between magnets and ferromagnetic materials. The gravity force is balanced differently in
these cases due to the various nature of magnetic forces. The EDS force nature bases on
the air gap, the speed of the vehicle, the electroconductivity of the material in the track
and the source of the magnetic field. Therefore levitation has place as long as vehicle moves
at significant speed (e. g. Inductrack [11]).

Opposing to EDS systems, the EMS force relies only upon the air gap between the
track and the magnet and the magnetic field value created by the electromagnet. This
system is capable of providing levitation both in static conditions and in the motion (e. g.
Transrapid [12]).

Hanging frame of the rolling stock above the track with EMS faces inherent instability.
It takes exact balance between magnetic attraction forces and the force of gravity for an air
gap between track structure and the magnet to exist. However, with a small deviation of
the air gap size, the attractive force between the short-circuited track coil and the onboard
magnetic system rises or weakens accordingly. Therefore the object either grips or falls.
The single way to provide stable levitation, in the EMS case, is automatic active control
by adjusting the current supplied to an electromagnet’s windings in response to signals
that are fed back to the magnet’s power supply from a sensor that consistently reads the
air gap.

The mentioned features make providing stability to a Maglev system to be a difficult
nonlinear control task. Different methods have yet been proposed to control magnetic
levitation. Primarily, a linearized model about a nominal operating point, that is a quite
common technique. It was demonstrated in lots of realistic applications [2]. However, in
our case high nonlinearity of Maglev systems makes the regulator performance degrade
swiftly with rising deviations from the nominal operating point.

Nonlinear techniques have been used by some authors to design stabilizing control
laws. Nonetheless, in most studies methods are designed either for small levitating objects
[13] or for inappropriate models in respect of physics and magnetic features of the system.
There are markable proposed methods of nonlinear control for stabilizing levitating objects
such as nonlinear model predictive control [14, 15], backstepping-technique [16] feedback
linearization [13, 17], and sliding mode control strategies [18, 19].

The results of this work extends the research in [20]. In paper [20] the control law
has a polynomial form. To achieve such a polynomial form the stable manifold method
was used. The authors applied the analysis of the dynamics of a nonlinear ensemble of
trajectories, but it was only to compare qualitative and quantitative characteristics, and
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ensemble optimization has not been applied yet. The novelty of the current work is that the
functional criterion is investigated analytically and a variation of the functional criterion by
parameters is obtained. The polynomial control law is optimized to minimize the integral
functional criterion, which evaluates the dynamics quality of not the one trajectory, but
an ensemble of nonlinear perturbed trajectories of the system. The considered ensemble
of trajectories covers the entire area of the engineering gap between the platform and the
guide rails. The presented analytical expressions of the variation of the functional criterion
by parameters allow to implement various gradient and directed optimization methods. As
a result of computational optimization of trajectories ensemble, a class of Pareto-optimal
polynomial regulators is constructed for considered control object. In the presented set,
each Pareto-optimal point corresponds to a specific controller and investigated functional
criteria which evaluates the entire ensemble of perturbed nonlinear trajectories.

Two vertical cross-sections of the considered Maglev platform are shown by Figure 1.
JSC NIIEFA proposed [21] suspension design of the object that contains the so-called
reference magnets, which can be made on the basis of permanent and/or superconducting
magnets, in addition to conventional electromagnets. The main lifting force necessary for
levitation is created by reference magnets while electromagnets maintain the required value
of the air gap — perform stabilizing function. The real experiments validated proposed
construction and allowed to measure the dependence between magnet forces and the air
gap. JSC NIIEFA proposes analogical approach in the another area of application as
well [21].

Figure 1. Vertical sections of the Maglev platform with a combined suspensions
a — side view; b — front view: 1 — upper electromagnet; 2 — lower electromagnet; 3 — permanent

magnet; 4 — ferromagnetic guideway; z1, z2 — vertical positions of combined suspensions;
Ftop — electromagnetic force of the upper magnet; Fbot — electromagnetic force of the lower magnet;

Fpm — magnetic force of the permanent magnet; Fg — gravity force.

The paper is organized as follows. Section 2 describes a physical model of the real
levitating platform and introduces its state-space representation in deviations with the
assumption that the platform moves only in a single plane. Thus, its position in space is
defined by the offset of vertical z coordinate and roll angle. In Section 3 the problem of
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parametric optimization of nonlinear trajectories ensemble is solved. Essential analytical
expressions are presented. Section 4 presents the computational results of optimization of
nonlinear trajectories ensemble, includes a comparative case, and illustrates the new class
of optimized polynomial controllers.

2. Maglev platform dynamics model. The model of dynamics of the object on
the Figure 1 was proposed and described in [22, 23]. In these papers the mass m [kg]
and width w [m] of the platform are specified. The vertical position characteristics of the
electromagnetic suspensions are z1 [m] and z2 [m]. The forces provided by two electromag-
netic suspensions depend on the supplied control signal u = (u1, u2)

∗ ∈ R2 respectively,
the symbol ∗ is labeling the matrix transpose operation.

The considered Maglev platform dynamics is described by its state space vector x ∈ R4

consisting of Euler angle θ [rad] and vertical position of the platform center zc [m], angular
velocity p = θ̇ [rad/s] and vertical velocity vc = żc [m/s],

x = (x1, x2, x3, x4)
∗ = (θ, zc, p, vc)

∗.

The dynamics model of the object in deviations can be written in general form by the
system

ẋ = f(x) + g(x)u,

y = D(x)
(1)

with initial condition
x(0) = x0. (2)

In formulas (1), (2) x0 is the initial deviation, u = (u1, u2)
∗ ∈ R2 is the control vector,

y = (z1, z2)
∗ ∈ R2 is the output vector of observation equations with D(x) defined by

D(x) =

(
zc +

w tan θ
2

zc − w tan θ
2

)
,

matrix g(x) has the form

g(x) =


0 0
0 0

Fem(zc+
w tan θ

2 )

2mw −Fem(zc−w tan θ
2 )

2mw
Fem(zc+

w tan θ
2 )

2m

Fem(zc−w tan θ
2 )

2m

 ,

vector function f(x) is denoted by

f(x) =


p
vc

Fpm(zc+
w tan θ

2 )−Fpm(zc−w tan θ
2 )

2mw
Fpm(zc+

w tan θ
2 )+Fpm(zc−w tan θ

2 )

2m

 ,

where Fpm is the permanent magnet force, and Fem is the component of electromagnet
force which are derived in [24, 25] in the form

Fem(z) =
k1

(z2 + k2z + k3)
2 ,

Fpm(z) =
p1

(z2 + p2z + p3)
2 ,
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and coefficients pj , j = 1, 3, ki, i = 1, 3 were based on the technical documentations in
[24] and [26]. Vector functions f(x), g(x), D(x) are defined and continuous over the entire
modeling interval [0, Tend] and smooth enough. The end point Tend [s] is specified by the
engineering requirements as the time of fading of all transition processes in the system (1).

We look for the stabilizing control law that provides stability for the system (1) and
has polynomial form

u = fupoly
(x) ≡

(
f
(1)
upoly (x1, x2, x3, x4)

f
(2)
upoly (x1, x2, x3, x4)

)

with polynomials f (1)upoly , f
(2)
upoly .

3. Parametric optimization of ensemble of nonlinear trajectories. To provide
stability of the system (1), (2) we parameterize the designed polynomial control law

u = fupoly
(x) =

(
f
(1)
upoly (x1, x2, x3, x4)

f
(2)
upoly (x1, x2, x3, x4)

)
, (3)

and polynomial functions can be denoted as

f (i)upoly
(x1, x2, x3, x4) =

∑
c(i)m1,m2,m3,m4

xm1
1 xm2

2 xm3
3 xm4

4 ,

i = 1, 2,

m1,m2,m3,m4 ⩾ 0,

m1 +m2 +m3 +m4 ⩽ 3,

numbers {m1,m2,m3,m4} ∈M , and M is a set of all possible combinations of monomials
degrees, c(i)m1,m2,m3,m4 ∈ R1 are coefficient of term with index (m1,m2,m3,m4) of ith

polynomial, i = 1, 2. That set of coefficients {c(i)m1,m2,m3,m4}, (m1,m2,m3,m4) ∈ M , i =
1, 2, are taken as varying parameters.

Then consider for system (1), (2) some set of initial deviations {x(j)0 }, j = 1, N , where
N is a number of ensemble trajectories which is perturbed by this initial set. System (1)
can be represented in the form

ẋ = F (x) ≡ f(x) + g(x)fupoly
(x),

y = D(x),
(4)

with initial conditions
x(0) = {x(j)0 }Nj=1. (5)

Then solutions of (4) compose an ensemble of trajectories {x(j)(t)}, where x(j) ≡
x(j)(t, x

(j)
0 ), j = 1, N .

We introduce an integral quality criteria on the trajectories of the ensemble:

Jens =

Tend∫
0

1

N

N∑
j=1

(y(j)
∗
Qy(j) + u(j)

∗
Ru(j))dt, (6)

y(j) = y(j)(t, x(j))(t), u(j) = u(j)(t, x(j))(t), Q and R are weight matrices. Let us introduce
the function φ(x(t)) as

φ(x(j)(t)) ≡ D∗(x(j)(t))QD(x(j)(t)) + f∗upoly
(x(j)(t))Rfupoly

(x(j)(t)). (7)
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Thus, the functional integral criterion (6) can be represented in the form

Jens =

Tend∫
0

1

N

N∑
j=1

φ(x(j)(t))dt. (8)

In order to minimize Jens −→ min we are considering the set of polynomial coefficients
{cm1,m2,m3,m4

} as varied parameters, thus Jens = Jens({cm1,m2,m3,m4
}).

In the books [6, 7, 27] it is presented a technique to obtaining the representation
of the first variation for the integral functional criteria. Following this technique, we got
a variation of functional (6) by the parameters when coefficient cm1,m2,m3,m4 is incre-
mented by some ∆c as cm1,m2,m3,m4 + ∆c. We denote ∆cF (x

(j)(t), {cm1,m2,m3,m4}) as
∆cF (x

(j)(t), {cm1,m2,m3,m4
}) ≡ F (x(j)(t), cm1,m2,m3,m4

+ ∆c) − F (x(j)(t), cm1,m2,m3,m4
),

and ∆cφ(x
(j)(t), {cm1,m2,m3,m4

}), ∆cfupoly
(x(j)(t), {cm1,m2,m3,m4

}) are denoted analogi-
cally. Then the variation of functional (3) by the parameter can be represented in the
form

δJens({cm1,m2,m3,m4
},∆c) =

Tend∫
0

1

N

N∑
j=1

(
−ψ(j)∗(t, x(j)(t))×

×∆cF (x
(j)(t), {cm1,m2,m3,m4

}) + ∆cφ(x
(j)(t), {cm1,m2,m3,m4

})
)
dt,

(9)

where

∆cF (x
(j)(t), {cm1,m2,m3,m4

}) = g(x(j)(t))×∆cfupoly
(x(j)(t), {cm1,m2,m3,m4

}),
∆cφ(x

(j)(t), {cm1,m2,m3,m4
}) = ∆cf

∗
upoly

(x(j)(t)) ·R ·∆cfupoly
(x(j)(t)),

(10)

and ψ(j)(t) are solutions of the conjugate differential system which are represented on the
ensemble of trajectories as

ψ̇(j) = −∂F
∂x

(x(j)(t))ψ(j) +
∂φ

∂x
(x(j)(t)), (11)

with terminal condition
ψ(j)∗(Tend) = 0.

Taking into account the right part of system (4), it is possible to represent

∂F (x)

∂x
(x(j)(t)) =

∂f(x)

∂x
(x(j)(t)) +

∂g(x)

∂x
fupoly

(x(j)(t)) +

+ g(x(j)(t))
∂fupoly

(x)

∂x
(x(j)(t))

(12)

and
∂φ

∂x
(x(j)(t)) =

1

N

N∑
j=1

(2D∗(x(j)(t))Q
∂D(x)

∂x
(x(j)(t)) +

+ 2f∗upoly
(x(j)(t))R

∂fupoly
(x)

∂x
(x(j)(t)).

(13)
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Considering that the right parts of the above expressions (7)–(13) met the all necessary
conditions [6, 27], thus, we have a representation for the criteria gradient:

∂Jens({cm1,m2,m3,m4})
∂cm1,m2,m3,m4

=

Tend∫
0

N∑
j=1

(
−ψ(j)∗(x(j)(t))

∂F

∂cm1,m2,m3,m4

(x(j)(t)) +

+
∂φ

∂cm1,m2,m3,m4

(x(j)(t))

)
dt.

(14)

This representation (14) allows one to apply various computational optimization
methods, including gradient optimization and other directed optimization methods.

4. Numerical optimization results. Let {x(j)0 }Nj=1 be a set of initial deviations in
(5) for the ensemble of N system’s trajectories {x(j)(t)}, where x(j) ≡ x(j)(t, x

(j)
0 ). The

ensemble is simulated as a response of nonlinear system (4) closed with (3) to the set (5)
of initial deviations from the equilibriium position. It seems interesting to compare the
ensembles with the same initial conditions for various polynomial control laws. The initial
approximation for the optimization process can be obtained with various ways. These can
be various random search methods, for example [8], or it can be the polynomials obtained
using the approach presented in [20, 28], as well as some other nonlinear methods.

The set of initial deviations is uniformly distributed in such a way that the deviations
of air gaps in the output vector y fall in the range ±4 mm: |yji (0)| ⩽ 0.004 m, i = 1, 2, j =
1, N, N = 20. The end of the simulation interval Tend = 0.250 s.

We compare the closed control system performance according to the quality criteria
(6) formulated for the ensemble of transient processes perturbed by initial deviations (5)
from the equilibrium position:

Jens =

Tend∫
0

1

N

N∑
j=1

y(j)∗Qy(j)︸ ︷︷ ︸
accuracy

+u(j)
∗
Qu(j)︸ ︷︷ ︸

energy costs

 dt, (15)

where according to (4), y(j) ≡ y(j)(t, x
(j)
0 ) ≡ D(x(j)(t, x

(j)
0 )), Q and R are the weight

matrices.
Practically, underbraced terms in (15) can be interpreted as a numerical estimation

of the regulator accuracy Jac and energy costs Jec of entire ensemble. Thus, Jens = Jac +
Jec. Proposed optimization approach allows the an engineer to construct and choose the
controllers whose trajectory ensembles are Pareto-optimal in terms of accuracy cost Jac
and energy cost Jec. To find the points of such a set of Pareto, the researcher can vary the
weight coefficients in (15).

Note, that interesting results were obtained in [20] and a numerical evaluation of the
ensemble of nonlinear trajectories was carried out. But for the same initial data, these
results are located above the Pareto curve of optimized controllers in the current work.
This case is represented in Figure 2 as a comparative case.

Figures 3 and 4 illustrate the results of a numerical simulation with optimized regu-
lator to stabilize the platform roll motion. Also, the simulation of the dynamics of current
values in the coils of electromagnets has a practical interest during the process of stabiliza-
tion. The dynamics of these values I(j)coils1

(t), I(j)coils2
(t) [А] has a complex dependence on the

vertical position and supplied control values (I
(j)
coils1

(t), I
(j)
coils2

(t))∗ = Vcoils(z
(j)(t), u(j)(t))
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Figure 2. Visualization of the Pareto-optimal set of polynomial controllers

Figure 3. Ensemble of the vertical position trajectories z
(j)
1 , z

(j)
2

for both suspensions with optimized controller

and illustrated on the Figure 4, where the form of function Vcoils(z
(j)(t), u(j)(t)) derived

in [24, 25].
Thus, for considered object it was received a new class of stabilizing Pareto-optimal

polynomial controllers.
5. Conclusion. The parametric optimization of trajectories ensemble is applied to

the design and optimization of the polynomial control laws (3) to stabilize the Maglev
nonlinear feedback control system (4). The advantage of the presented nonlinear approach
is that the minimized integral functional criteria (6) evaluates the dynamics quality of not
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Figure 4. Trajectories ensemble of electromagnet coil currents I
(j)
coils1

, I
(j)
coils2

for both suspensions with optimized controller

the one trajectory, but an ensemble of nonlinear perturbed trajectories. This ensemble of
trajectories are perturbed by initial disturbances (5), which are distributed within entire
engineering gap between platform and the guide rails. Presented optimization approach
based on the consideration the entire ensemble of perturbed trajectories as well as the
analytical representation of the first variation of functional criteria (14) allowed to get a
new Pareto optimal set of polynomial controllers.
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17. Rosinová D., Hypiusová M. Comparison of nonlinear and linear controllers for magnetic levitation
system. Applied Sciences, 2021, vol. 11, no. 17, p. 7795.

18. Vernekar P., Banda V. Robust sliding mode control of a magnetic levitation system: continuous-
time and discrete-time approaches. Applied Sciences, 2021, vol. 11, no. 17, p. 7795.

19. Wang J., Zhao L., Yu L. Adaptive terminal sliding mode control for magnetic levitation systems
with enhanced disturbance compensation. IEEE Trans. Industrial Electronics, 2021, vol. 68, no. 1, pp. 756–
766.

20. Melnikov D. D., Sakamoto N., Zavadskiy S. V., Golovkina A. G. Nonlinear optimal control for
Maglev platform roll motion. IFAC-PapersOnLine, 2022, vol. 55, no. 16, pp. 418–423.
https://doi.org/10.1016/j.ifacol.2022.09.060

21. Amoskov V. M., Belov A. V., Belyakov V. A., Gapionok E. I., Gribov Y. V., Kukhtin V. P.,
Lamzin E. A., Mita Y., Ovsyannikov A. D., Ovsyannikov D. A., Patisson L., Sytchevsky S. E.,
Zavadskiy S. V. Magnetic model MMTC-2.2 of ITER tokamak complex. Vestnik of Saint Petersburg
University. Applied Mathematics. Computer Science. Control Processes, 2019, vol. 15, iss. 1, pp. 5–21.
https://doi.org/10.21638/11702/spbu10.2019.101

22. Amoskov V. M., Arslanova D. N., Bazarov A. M., Belov A. V., Belyakov V. A., Belyakova T. F.,
Vasiliev V. N., Gapionok E. I., Zaitzev A. A., Zenkevich M. Yu., Kaparkova M. V., Kukhtin V. P.,
Lamzin E. A., Larionov M. S., Maximenkova N. A., Mikhailov V. M., Nezhentzev A. N., Ovsyannikov D. A.,
Ovsyannikov A. D., Rodin I. Yu., Sychevsky S. E., Firsov A. A., Shatil N. A. Simulation of electrodynamic
suspension systems for levitating vehicles. IV. Discrete track systems. Vestnik of Saint Petersburg
University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2016, iss. 3, pp. 4–17.

23. Amoskov V. M., Arslanova D. N., Bazarov A. M., Belov A. V., Belyakov V. A., Firsov A. A.,
Gapionok E. I., Kaparkova M. V., Kukhtin V. P., Lamzin E. A., Larionov M. S., Mizintzev A. V.,
Mikhailov V. M., Nezhentzev A. N., Ovsyannikov D. A., Ovsyannikov A. D., Rodin I. Yu., Shatil N. A.,
Sytchevsky S. E., Vasiliev V. N., Zenkevich M. Yu. Simulation of maglev EDS performance with detailed
numerical models. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science.
Control Processes, 2018, vol. 14, iss. 4, pp. 286–301. https://doi.org/10.21638/11702/spbu10.2018.402

24. Andreev E. N., Arslanova D. N., Akhmetzyanova E. V., Bazarov A. M., Vasil’ev V. N.,
Vasil’eva O. S., Verkhoturov M. S., Gapionok E. I., Demina A. A., Zavadskii S. V., Zenkevich M. Yu.,
Kaparkova M. V., Kuz’menkov V. D., Labusov A. N., Larionov M. S., Manzuk M. V., Mizintsev A. V.,
Nezhentsev A. N., Ovsyannikov D. A., Ovsyannikov A. D., Khokhlov M. V. Combined electromagnetic
suspensions with reduced energy consumption for levitation vehicles. Technical Physics, 2019, vol. 64,
no. 7, pp. 1060–1065.

25. Amoskov V., Arslanova D., Baranov G., Bazarov A., Belyakov V., Firsov A., Kaparkova M.,
Kavin A., Khokhlov M., Kukhtin V., Kuzmenkov V., Labusov A., Lamzin E., Lantzetov A., Larionov M.,
Nezhentzev A., Ovsyannikov D., Ovsyannikov A., Rodin I., Shatil N., Sytchevsky S., Vasiliev V.,
Zapretilina E., Zenkevich M. Modeling EMS Maglev systems to develop control algorithms. Cybernetics
and Physics, 2018, vol. 7, no. 1, pp. 11–17.

26. Zavadskiy S. V., Verkhoturov M. S., Golovkina A. G., Ovsyannikov D. A., Kukhtin V., Shatil N.,
Belov A. Optimization of a real-time stabilization system for the MIMO nonlinear MagLev platform.
Stability and Control Processes. SCP 2020. Lecture Notes in Control and Information Sciences —
Proceedings. Cham, Springer Publ., 2022, pp. 281–290. https://doi.org/10.1007/978-3-030-87966-2_31

27. Pontryagin N. S., Boltyansky V. G., Gamkrelidze M. V., Mishchenko E. V. Matematicheskaya
teoriya optimalnikh processov [Mathematical theory of optimal processes]. Moscow, Nauka Publ., 1983,
392 p. (In Russian)

118 Вестник СПбГУ. Прикладная математика. Информатика... 2023. Т. 19. Вып. 1



28. Sakamoto N. Case studies on the application of the stable manifold approach for nonlinear optimal
control design. Automatica, 2013, vol. 49, no. 2, pp. 568–576.

Received: December 17, 2022.
Accepted: January 19, 2023.

Au t h o r s’ i n f o rm a t i o n:

Sergey V. Zavadskiy — PhD in Physics and Mathematics, Researcher; s.zavadsky@spbu.ru

Dmitrii A. Ovsyannikov — Dr. Sci. in Physics and Mathematics, Professor; d.a.ovsyannikov@spbu.ru

Dmitrii D. Melnikov — Master Student; st061752@student.spbu.ru

Оптимизационный подход к проектированию нелинейных контроллеров
систем управления

С. В. Завадский, Д. А. Овсянников, Д. Д. Мельников

Санкт-Петербургский государственный университет, Российская Федерация,
199034, Санкт-Петербург, Университетская наб., 7–9

Для цитирования: Zavadskiy S. V., Ovsyannikov D. A., Melnikov D. D. Optimization
approach to the design of nonlinear control system controllers // Вестник Санкт-Петербургско-
го университета. Прикладная математика. Информатика. Процессы управления. 2023. Т. 19.
Вып. 1. С. 109–119. https://doi.org/10.21638/11701/spbu10.2023.109

Оптимизационный подход применяется к синтезу и оптимизации нелинейной системы
оптимального управления с обратной связью в реальном времени для маглев платфор-
мы на магнитной подвеске. Для оптимизации нелинейного закона управления миними-
зируется интегральный функционал, который оценивает качество динамики не одной
траектории, а ансамбля нелинейных траекторий системы и охватывает всю область
инженерного зазора между платформой и направляющими рельсами. В этой области
магнитные силы обеспечивают сильно нелинейные эффекты из-за рассмотренных кон-
структивных особенностей объекта, что делает задачу нелинейной задачей управления
с несколькими входами и несколькими выходами. Компоненты вектора закона управ-
ления с обратной связью имеют полиномиальную форму от переменных пространства
состояний. Для изучаемого объекта управления построен класс Парето-оптимальных
полиномиальных регуляторов в результате вычислительной оптимизации траекторий
ансамблей. В представленном множестве каждая Парето-оптимальная точка соответ-
ствует конкретному контроллеру и исследуемому функционалу, оценивающему весь
ансамбль возмущенных траекторий. Это позволяет инженеру-исследователю выбирать
различные нелинейные регуляторы и добиваться компромисса между точностью и энер-
гетическими затратами.
Ключевые слова: нелинейные системы, стабилизация, нелинейные регуляторы, Маглев,
реальное время, обратная связь, ансамбль траекторий, оптимизация.
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