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This paper examines the ability to employ the model of a wrinkled thin film coating under
plane strain conditions for the generation and manipulation of sounds. It is assumed that
the film-on-substrate structure represents a multilevel system consisting of four phases with
different elastic properties such as surface layer, film material, interphase and substrate
material. The undulation of surface and interface geometry leads to the complex stress state
of the film coating resulting from the superposition of two perturbed stress fields evolved
near the curved surface and interface. The analysis of the stress state reveals the periodic
distribution of the longitudinal stresses smoothly changing from surface to interface. This
facilitates the creation of a sound synthesis technique similar to the timbre morphing method
which provides the transition between two waveforms while creating new intermediate
waveform during this process. The perspective of using the wrinkled thin film model for
sound generation is gained by its complex behavior, where the influence of one parameter
on the stress distribution is affected by other parameters, which in turn reflects in the rich
sound morphologies during the mapping of the stress oscillations onto sound.
Keywords: sound synthesis, physical modeling approach, wrinkled thin film, stress field per-
turbation.

1. Introduction. In the last decades, many studies have been conducted developing
the physical modelling approaches in the context of sound design and computer music ap-
plications [1–4]. The main efforts have been focused on the simulation of electronic circuits
[5, 6], vibrating objects [7, 8], and acoustic environments [9, 10]. As it was demonstrated
in [11–14], the physical models also can be used for compositional purposes extending the
algorithmic music practices and bringing some benefits to interactive composing tasks such
as generation and control of sound patterns and structures in real-time [15, 16]. In general,
the models of sound generation and transformation based on physical principles offer new
methods for performance and composition process with intuitive parametric control over
a complex timbral behaviour, which explains their popularity.

Motivated by this idea, we decided to incorporate the latter research on the me-
chanical behaviour of ultra-thin films with a thickness in the range of 1–100 nm into the
framework of sound synthesis algorithms. In recent years, the development of low-defect
nanocomposites became one of the priority areas of modern micro- and optoelectronics.
By combining materials and structural elements at the nanoscale, it is possible to create
devices with unique optical, electrical and magnetic properties [17, 18]. It is well known
that the mechanical properties of materials at the nanoscale highly depend on the size of
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the structural elements [19]. The increased ratio of surface area to volume increases the
role of surface and interface layers in the mechanical performance of such materials [20]. It
is generally believed that the elastic properties of the surface and interphase layers differ
substantially from similar properties of the bulk phases [21, 22]. At the macrolevel, this
difference practically does not affect the properties and behaviour of the solids. However,
in the case of nanostructures, this difference is manifested, in particular, in the noticeable
influence of surface and interface stresses on the physical properties of the material [23,
24]. The calculations carried out using the molecular dynamics simulations confirmed this
hypothesis and allowed the developing an approach describing a deformable solid as a
multilevel system where the surface and interphase layers are considered as the separate
subsystems that have physical and mechanical properties different from the bulk material
[25, 26].

Thus, one of the most important directions for research in the field of thin-film me-
chanics is connected with the development of theoretical models for accurate measuring
and analysis of the stress state in ultra-thin film materials that take into account the
effect of surface and interface stresses. In view of this problem, we have been working
on the continuum models capable to predict the distribution of stresses in ultra-thin film
coatings with periodically perturbated surface and interface profiles [27–33]. It should be
noted that the experimental studies and numerical simulations revealed a large number
of possible roughening scenarios during deposition and consequent annealing process of
the thin film materials [32, 33]. One of the mechanisms resulting in perturbation of thin
film geometry is buckling driven by mechanical instability which is commonly observed in
thin-film structures with compliant substrates under compressive loading [34, 35]. Another
one is related to the morphological changes at the atomic level as a consequence of stress
field relaxation [36–38]. The dominant driving force of such transformations is a change
in the chemical potential, which, due to the reduced stability of the surface atomic layers,
leads to the diffusion of atoms along the surface with a high value of the chemical potential
to the regions with a low value [39]. This process leads to the formation of a nano- and
microrelief which dramatically alter the further performance of micro- and optoelectronic
devices affecting their mechanical, electrical and optical properties [17]. Therefore, it is
important from both the fundamental and technological point of view to understand how
the topological and elastic properties of the surface and interface influence on the stress
distribution in ultra-thin film materials.

For this purpose, the theoretical framework was developed based on surface/interface
elasticity model proposed by Gurtin and Murdoch [40, 41]. They offered to consider the
surface and interphase domains of heterogeneous solids as negligibly thin layers ideally ad-
hering to the bulk materials and differing from them by the elastic moduli. The stress resul-
tants acting in such surface/interface layers were considered as surface/interface stresses.
This allowed deriving the constitutive equations linked the surface/interface stress and
strain tensors. The conditions of mechanical equilibrium on the surface and interface were
given in the terms of generalized Young—Laplace equations [42]. The additional boundary
equations were introduced from the inseparability conditions of bulk and surface/interface
domains. To solve these equations jointly with the constitutive equations of Hooke law de-
scribing the elastic behaviour of film and substrate bulk materials, we employ the complex
variable method [43–45] and boundary perturbation technique [46] whereby the unknown
functions are sought in the form of a power series in the small parameter represented by
an amplitude-to-wavelength ratio of surface/interface relief. This led to semi-analytical ex-
pressions for the components of the stress and strain tensors derived in the form of Fourier
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series. The subsequent numerical analysis provides an opportunity to investigate the effect
of geometrical and physical parameters on stress distribution in ultra-thin film coating.
The most interesting results were obtained in the case when both free surface and inter-
face were undulated [30]. Such configuration leads to the superposition of two perturbed
stress fields raised as a result of surface and interface perturbation. Consequently, the in-
terference patterns occur in the stress field within the bulk phase of the film coating. This
means that calculating the stress distribution along the lines parallel to the unperturbed
surface/interface boundaries we get different waveforms smoothly changing from surface
to interface. In terms of sound synthesis techniques, this reminds the timbre morphing
method which provides transition between two sounds while creating new intermediate
sounds during this process [47, 48]. In fact, that comparison led us to the idea to apply the
model of ultra-thin film coating with perturbed surface and interface for sound synthesis
perspectives. However, it should be noted that it has some other features related to the
complex behaviour of multilevel systems where the influence of one parameter on stress
distribution is affected by other parameters. All these aspects are emphasized in this paper
considering the stress distribution in terms of sound representation.

2. Elasticity problem. Consider an ultra-thin film coating with undulated geometry
bonded to a substrate under plane strain conditions which means that there is zero strain
in the direction normal to the axis of applied stress (Figure 1). This allows us to formulate a
two-dimensional boundary value problem for a curvilinear strip Ω1 of an arbitrary thickness
hf bonded to a half-plane Ω2. Introducing a complex variable z = x1+ix2, where i2 = −1
and (x1, x2) are the global Cartesian coordinates, the undulated geometry of the film is
described by the continuous function f as it follows:

Γ1 = {z : z ≡ z1 = x1 + i[hf + εf(x1)]} ,
Γ2 = {z : z ≡ z2 = x1 + iεf(x1)} , (1)

Ω1 = {z : εf(x1) < x2 < hf + εf(x1)} ,
Ω2 = {z : x2 < εf(x1)} ,

Figure 1. Schematic
of the wrinkled film coating

where f(x1 + a) = f(x1), i. e. a is the wave-
length of undulation, the maximum deviation of
the film from a flat configuration is A = εa, i. e.
max |f(x1)| = A, and ε is a perturbation para-
meter.

Under the condition of infinitesimal defor-
mation in the case of plane strain, the consti-
tutive equations describing the stress-strain re-
lations for surface/interphase layers and bulk
phases of the elastically isotropic film-substrate
system reduce to

σs
tt(zj) =Ms

j ε
s
tt(zj), σ

s
33(zj) = λsjε

s
tt(zj),

Ms
j = λsj + 2µs

j , zj ∈ Γj , j = {1, 2},
(2)

σnn(z) = (λj + 2µj)εnn(z) + λjεtt(z),

σtt(z) = (λj + 2µj)εtt(z) + λjεnn(z), (3)

σ33(z) =
λj

2(λj + µj)
[σtt(z) + σnn(z)] ,
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σnt(z) = 2µjεnt(z), z ∈ Ωj , j = {1, 2},

here σs
tt and εstt are the surface/interface stress and strain, {σnn, σtt, σnt} and {εnn,

εtt, εnt} are the components of bulk stress and strain tensors defined in the local Carte-
sian coordinates (n, t), n and t are normal and tangential to the interface; {λsj , µs

j} and
{λj , µj} are the Lamé constants for surface/interphase layer Γj and bulk phase Ωj , re-
spectively.

It is supposed that the presence of surface σs and interface τ s stresses results in surface
traction σ(z1) and traction jump ∆σ(z2) across the interface according to the generalized
Young— Laplace law:

σ(z1) =T
sσs(z1),

∆σ(z2) = σ+(z2)−σ−(z2) = −T sτ s(z2),
(4)

where

σs(z1) ≡ σs
tt(z1), τ

s(x1) ≡ σs
tt(z2),

T s(·) = κ(x1)(·)− i
1

h(x1)

d(·)
dx1

,

σ = σnn + iσnt, σ
±(z2) = lim

z→z2±i0
σ(z),

and κ and h are the local principal curvature and the metric coefficient, respectively.
For geometrically coherent surface and interface regions, the condition of continuity

of the displacement field takes the subsequent form

εstt(z1) = εtt(z1), ∆u(z2) = u+(z2)− u−(z2) = 0, (5)

here u±(z2) = lim
z→z2±i0

u(z), u = u1 + iu2, u1 and u2 are the displacements along the

corresponding coordinate axes x1 and x2.
Due to mismatch between crystal lattice parameters of the film and substrate, the

misfit stresses arise described as the far-field stress state:

lim
x2→−∞

(σ22−iσ12) = 0,

lim
x2→−∞

σ11 = T2, lim
x2→−∞

ω = 0,
(6)

where σij (i, j = {1, 2}) are the stresses in coordinates (x1, x2) and ω is the rotation angle.
Since it is supposed that the film and substrate materials are linearly elastic, the

boundary value problem (1)–(6) can be solved on the basis of the superposition principle
employing the solutions derived recently in terms of Goursat —Kolosov complex potentials
[49, 50]. Following this technique, the solution for the film-substrate system is considered
as a sum of the solutions of two complementary problems. In the first problem, the bulk
stresses σ1, the surface stresses ϑs, and displacements u1 arise under the unknown self-
balanced surface load p applied to the curvilinear boundary of homogeneous half-plane
D1

1 = {z : x2 < hf + εf(x1)} with the elastic properties of the film. The second problem
describes a coupled deformation of two joint half-planes D2

1 = {z : x2 > εf(x1)} and D2
2 =

{z : x2 < εf(x1)} with the unknown jumps of stresses ∆σ2 and displacements ∆u2 along
the curvilinear interface under the influence of interface stresses τs and longitudinal ones
Tj acting in D2

j , j = {1, 2}.
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Thus, the boundary value problem (1)–(6) is reduced to the system of the boundary
equations for the unknown functions p, ϑs, σs and τs. Following Kolosov [44] and Muskhe-
lishvili [45], the stress-strain state of the elastic half-plane D1

1 and two-component plane
2⋃

j=1

D2
j is described in terms of two arbitrary holomorphic functions of a complex variable

Φk
j and Υk

j (k, j = 1 and k = 2, j = {1, 2}, correspondingly), the Goursat —Kolosov comp-
lex potentials. After that, the derived boundary equations are expressed as the functional
equations on the boundary values of complex potentials Φk

j and Υk
j at curved surface Γ1

and interface Γ2 [30]. To obtain the solution, we utilise the boundary perturbation method
which reduces the boundary conditions along the curvilinear surface and interface profiles
to the equivalent ones along the rectilinear boundaries, i. e. z1 = x1 + ihf and z2 = x1,
respectively [46]. According to this method, the unknown functions are sought in the form
of the power series in the small parameter ε:

Ψ(z) =

∞∑
m=0

εm

m!
Ψ(m)(z), Ψ(z) ≡ {Φk

j (z),Υ
k
j (z)},

Π(zj) =

∞∑
m=0

εm

m!
Π(m)(zj), Π(zj) ≡ {p(z1), ϑs(z1), σs(z1), τs(z2)}.

(7)

And their boundary values are represented in the form of the Taylor series in the vicinity
of the lines =z1 = 0 and =z2 = 0 treating the real variable x1 as a parameter:

Λ(m)(zj) =

∞∑
l=0

[iεf(x1)]
l

m!
Λ
(l)
(m)(x1),

Λ(m)(zj) ≡ {Φk
j(m)(zj),Υ

k
j(m)(zj), p(m)(z1), ϑs(m)(z1), σs(m)(z1), τs(m)(z2)}.

(8)

Substituting the series (7) and (8) into the boundary equations related to the con-
ditions of the mechanical equilibrium (4) and equating the coefficients of like powers of
ε, we come to the recurrent sequence of equations written in the form of the Riemann —
Hilbert problems on the jumps of analytical functions Φk

j(m) and Υk
j(m) at the rectilinear

boundaries. The solution of the obtained equations gives the explicit expressions for Φk
j(m)

and Υk
j(m) written in the form of Cauchy-type integrals on the unknown functions p(m),

σs(m), ϑs(m) and τs(m). By applying the derived expressions and the Sokhotski— Plemelj
formulas for the limiting values of the Cauchy-type integrals [43, 51] to the boundary equa-
tions associated with the kinematic conditions (5), we come to the hypersingular integral
equations in the unknown functions p(m), ϑ′s(m), σ

′
s(m) and τ ′s(m). The kernels of derived in-

tegral equations are the same for each order of the approximation, and the right-hand sides
are the known continuous functions. Taking into account the properties of Cauchy-type
integrals, the solution is received in the form of Fourier series.

In the Section 3, several representative numerical examples are employed to demon-
strate the effect of physical and geometrical parameters on longitudinal stress σtt distribu-
tion in ultra-thin film coating with perturbed geometry. After that, the approach to sound
generation based on the developed model is discussed.

3. Sound synthesis approach. To begin, let us consider the metal-on-metal hete-
roepitaxial system with equal Poisson ratios ν1 = ν2 = 0.3. This assumption allows to
investigate the effect of the substrate on the undulation of the stress field in the wrink-
led film through the only one parameter, film-to-substrate stiffness ratio r = µ1/µ2. For
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example, the substrate is stiffer than the film when r < 1, and inversely when r > 1.
In the case when r = 1, we get the solution for the homoepitaxial film-on-substrate sys-
tem. The surface and interface effects are presented by the elastic constants {λs1, µs

1} and
{λs2, µs

2}, respectively, which are usually determined from the molecular dynamics simu-
lations [26, 52]. For instance, the aluminium free surface is described by the parameters
λs = 6.851 N/m and µs = −0.376 N/m (as a consequence Ms = 6.099 N/m). It should
be noted that surface and interface elastic properties of thin film materials are highly de-
pendent on fabrication and post-processing techniques. So, we take into account the effect
of surface and interface elasticity through variation of constants Ms

1 and Ms
2 within the

specified limits. To describe the geometry of the wrinkled thin film with arbitrary wave-
length a, amplitude A = aε and thickness hf in accordance with equation (1), we adopt
the cosine function:

f(x1) = −a cos(b1x1), bk =
2πk

a
.

Here, we restrict attention to the amplitude-to-wavelength ratio range ε ∈ [0, 0.1] and
obtain the 5th-order approximation solution:

σtt(x1, x2) = T1 +

5∑
k=1

εk
[
A0

k +Ak(x2, hf , a, ν1, ν2, r,M
s
1 ,M

s
2 , T1) cos(bkx1)

]
.

The analysis similar to the one conducted in [31] estimates the convergence of the derived
5th-order approximate solution for ε ∈ [0, 0.1]. However, it is important to note that the
accuracy of the approximation scheme decreases with the increasing of the parameter ε
and the higher order terms within the boundary perturbation method should be considered
for its extended range.

Figure 2, I–VIII illustrates the distribution of the normalized longitudinal stress
σtt/T1 in the film coating along the lines parallel to the unperturbed surface/interface
boundaries, i. e. x2 = lhf , l = [0, 1]. The distribution is plotted within one period, i. e.
x1/a ∈ [−0.5, 0.5], for film-on-substrate systems described by the following set of pa-
rameters a = 10 nm, A = {0.05a, 0.1a}, hf = {0.1a, 0.2a}, r = {0.1, 10}, M1,M2 =
{1, 10} N/m. Here, we don’t provide a detailed analysis of the influence of various pa-
rameters on the stress distribution and emphasize only the main trends which may be of
interest in the framework of model-based sound generation. First of all, we should note
that increasing of the amplitude of the wrinkles A leads to increasing of the stress level
and change of distribution waveform (in Figure 2, compare I with II, and V with VI).
The change of the stiffness ratio from r = 0.1 to r = 10 corresponding to soft and stiff
film, respectively, results in a significant change of the stress distribution waveform in the
bottom part of the film (in Figure 2, compare in pairs I–IV with V –VIII), which also
affects the stress distribution in the top part due to the superposition of two undulated
stress fields caused by perturbation of interface and free surface. The similar effect on
the stress distribution in sub-surface and sub-interface areas, and, as consequence, in the
bulk phase of the film, have the stiffness of surface Ms

1 and interface Ms
2 , respectively

(in Figure 2, compare II with III, and VI with VII). However, worth noting, the effect of
the interface on the stress distribution near the free surface, and vice versa, decreases with
the increasing of the film thickness hf (in Figure 2, compare III with IV, and VII with
VIII).
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Figure 2. The distribution of the normalized longitudinal stress σtt/T1 (value is plotted along
the ordinate of each graph) in the film along the lines x2 = lhf , l = [0, 1] (value corresponds to
different graphs in a column) within one period x1/a = [−0.5, 0.5] (value is plotted along the
abscissa of each graph) of a wrinkle with a wavelength a = 10 nm when the film-substrate

system is described by the following parameters
I: A = 0.05a, hf = 0.1a, r = 0.1, Ms

1 = 1 N/m, Ms
2 = 1 N/m; II: A = 0.1a, hf = 0.1a, r = 0.1, Ms

1 = 1 N/m,

Ms
2 = 1 N/m; III: A = 0.1a, hf = 0.1a, r = 0.1, Ms

1 = 10 N/m, Ms
2 = 10 N/m; IV: A = 0.1a, hf = 0.2a,

r = 0.1, Ms
1 = 10 N/m, Ms

2 = 10 N/m; V : A = 0.05a, hf = 0.1a, r = 10, Ms
1 = 1 N/m, Ms

2 = 1 N/m; VI:

A = 0.1a, hf = 0.1a, r = 10, Ms
1 = 1 N/m, Ms

2 = 1 N/m; VII: A = 0.1a, hf = 0.1a, r = 10, Ms
1 = 10 N/m,

Ms
2 = 10 N/m; VIII: A = 0.1a, hf = 0.2a, r = 10, Ms

1 = 10 N/m, Ms
2 = 10 N/m.
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To map the presented stress distribution on sound, we scale the stress level to [−1, 1]
range and directly translate it to the audible domain. Thus, the sound signal s can be
presented as

s(t) =

5∑
k=1

Ãk(x2, hf , A, f0, r,M
s
1 ,M

s
2 ) cos(2πkf0t), (9)

where the fundamental frequency of the generated sound f0 is obtained by mapping the
film undulation wavelength defined in the range a ∈ [1, 1000] nm to sound wavelength
defined in the range λ ∈ [0.017, 17.15] m under consideration the speed of sound equal
to v = 343 m/s which corresponds to the range of human hearing frequency perception
f0 ∈ [20, 20 000] Hz. It is worth noting that the harmonic amplitudes are varying with the
fundamental frequency variation due to the size effect observed in nanoscale systems. For
the wrinkled ultra-thin films with sinusoidal geometry, it was analysed in [30]. Modulating
the parameter x2, we get the sound morphing effect graphically presented in Figures 2,
I–VIII. The modulation rate can be linked with the film thickness hf in such a way that
the increasing of the parameter hf leads to decreasing the modulation rate.

As an example, one can see a diagram of a sound waveform presented in Figure 3
within one period which is corresponded to the scaled distribution of the normalized
longitudinal stress σtt/T1 in the film along the lines x2 = hf (Figure 3, a) and x2 = 0
(Figure 3, b) within one period x1/a = [−0.5, 0.5] in the case of the film-substrate system
described by the following parameters: a = 10 nm, A = 0.1a, hf = 0.2a, r = 10, Ms

1 =
10 N/m, Ms

2 = 10 N/m.

a b

Figure 3. Diagram of a sound waveform within one period which is corresponded to the scaled
distribution of the normalized longitudinal stress σtt/T1 in the film along the lines x2 = hf (a)

and x2 = 0 (b) within one period x1/a = [−0.5, 0.5] in the case of the film-substrate system
described by the parameters a = 10 nm, A = 0.1a, hf = 0.2a, r = 10,

Ms
1 = 10 N/m, Ms

2 = 10 N/m

4. Conclusion. In this paper, the model of a wrinkled thin film coating describing the
undulation of the elastic stress field caused by the perturbed film geometry was employed
for the development of a sound synthesis algorithm. The film-on-substrate structure was
considered as a multilevel system where the elastic properties of the surface and inter-
phase layers differ from the similar properties of the bulk phases. The superposition of
two perturbed stress fields raised as a result of surface and interface geometric imperfec-
tions leads to interference patterns in the stress field within the bulk phase of the film
coating. The analysis of the periodic stress distribution in the thin film along the lines
parallel to the unperturbed surface/interface boundaries allowed us to map the stress os-
cillations smoothly changing from surface to interface to the sound waveforms with rich
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morphologies. Modulation through the thickness of the film results in the sound morphing
effect.

The presented model is based on the semi-analytical solution obtained using symbolic
computations, and it is not suitable for real-time interactive simulation. In order to over-
come this issue, we are going to employ the neural network with feedforward architecture
trained on data generated on the basis of the derived solution. The design of the neural
network capable of reconstructing the Fourier series coefficients using the geometrical and
physical parameters of the discussed problem is the objective of future research.
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Метод синтеза звука, основанный на анализе упругих напряжений
в гофрированном тонкопленочном покрытии∗

С. А. Костырко, Б. С. Шершенков

Университет ИТМО, Российская Федерация,
197101, Санкт-Петербург, Кронверский пр., 49

Для цитирования: Kostyrko S. A., Shershenkov B. S. Sound synthesis approach based on
the elastic stress analysis of a wrinkled thin film coating // Вестник Санкт-Петербургского
университета. Прикладная математика. Информатика. Процессы управления. 2023. Т. 19.
Вып. 1. С. 72–89. https://doi.org/10.21638/11701/spbu10.2023.107

Изучается возможность использования модели гофрированного тонкопленочного по-
крытия в условиях плоской деформации для генерации и манипулирования звуком.
Структура «пленка—подложка» рассматривается как многоуровневая система, в кото-
рой упругие свойства поверхностных и межфазных слоев отличаются от аналогичных
свойств объемных фаз. Суперпозиция двух возмущенных полей напряжений, возник-
ших в результате геометрических несовершенств поверхности и межфазного слоя, де-
монстрирует интерференционные картины поля напряжений в объемной фазе пленоч-
ного покрытия. Анализ периодического распределения напряжений в тонкой пленке
вдоль линий, параллельных невозмущенным границам поверхности/интерфейса, при-
водит к развитию различных форм волн, плавно переходящих от поверхности к ин-
терфейсу. Такое наблюдение позволяет сформулировать метод синтеза звука, анало-
гичный методу тембрального морфинга, который обеспечивает переход между двумя
звуками, создавая в ходе этого процесса новые промежуточные звуки. Перспективность
использования модели гофрированной тонкой пленки для генерации звука обусловлена
ее сложным поведением, когда в ходе анализа напряженного состояния влияние одного
параметра отражается на влияние других, что, в свою очередь, приводит к различным
звуковым морфологиям.
Ключевые слова: синтез звука, физическое моделирование, гофрированное тонкопле-
ночное покрытие, возмущение поля напряжений.
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