Динамическая сетевая модель производства с инвестированием*

В. А. Кочевадов, А. А. Седаков

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9

Для цитирования: Кочевадов В. А., Седаков А. А. Динамическая сетевая модель производства с инвестированием // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2023. Т. 19. Вып. 1. С. 10–26. https://doi.org/10.21638/11701/spbu10.2023.102

В статье исследуется динамическая сетевая игра в дискретном времени, моделирующая конкурентное поведение фирм на рынке однотипного продукта. При этом считается, что фирмы в условиях одновременного и независящего друг от друга выбора своих действий реализуют поведение, которое определяет в каждый момент времени их производственное и инвестиционное поведение. Производственное поведение фирмы отражает текущие объемы продукции, которые ей следует произвести и поставить на рынок; инвестиционное — задает текущие объемы инвестиций, направляемые фирмой на модернизацию своей технологии производства, не позволяя ей устаревать. Предполагается также, что удельные издержки каждой фирмы зависят как от ее инвестиционного поведения, так и от инвестиционного поведения конкурентов, определяемые с помощью экзогенно заданной сетевой структуры. Для исследуемой модели получены два варианта равновесия по Нэшу — в классе программных и в классе позиционных стратегий. Проведен анализ влияния сетевой структуры и связанных с ней параметров модели на поведение фирм, их прибыли, а также на их конкурентное преимущество.

Kлrоче6ые cлrовa: конкуренция, инвестиции, динамическая игра, сеть, равновесие по Hэшу.

1. Введение. Активное развитие сетевых игр продиктовано высоким прикладным значением соответствующей теории. Сетевые структуры позволяют эффективно описывать как конкурентное, так и кооперативное взаимодействие, позволяя расширить класс решаемых игровых задач за счет дополняемости (complementarity) и заменяемости (substitutability) в поведении игроков [1–4], а также специфики их взаимного влияния в зависимости от наличия сетевой связи. Практика сотрудничества на рынке, которая описывается связями в игре, является довольно распространенной в естественных условиях и плодотворной для игроков, что актуализирует тему сетевого взаимодействия участников рынка [5]. При этом специфика связи, выраженная в значениях сетевого влияния, как показано в [6], представляет собой отдельный акцент для исследования, способный воплощать собой рычаги регулирования, например по загрязнению окружающей среды производителями. Потому можно заключить, что сотрудничество в условиях общей конкуренции — довольно интересное явление и может быть раскрыто в контексте оптимального управления, в частности производственного процесса, поскольку конкуренция без сотрудничества, как отмечается в [7], приводит к расточительному дублированию усилий игроков. Ввиду плодотворности данного направления многие вопросы по-прежнему не раскрыты, хотя были получены

^{*} Исследование выполнено за счет гранта Российского научного фонда № 22-11-00051. http://rscf.ru/project/22-11-00051/

[©] Санкт-Петербургский государственный университет, 2023

хорошие теоретические результаты [8, 9]. Так, связь сетевых структур и соответствующих им равновесий в условиях динамики игрового процесса рассматривалась в [1–3]. Значительная часть работ в области сетевых игр посвящена играм с экстерналиями, возникающим преимущественно в потребительском контексте (см., например, [7, 10, 11]), в то время как исследований игр с производственными экстерналиями относительно немного. При этом усилия игроков, продиктованные дополняемостью в их действиях, зачастую рассматриваются как инвестиционные и в основном направленные на некоторые эфемерные величины — знания, мнения, впечатления и пр. [12–16], руководствуясь которыми игроки могут реализовывать свою основную линию поведения.

В данной статье изучается равновесное поведение фирм-производителей товара на общем конкурентном рынке сбыта в условиях их сетевого взаимодействия, а также проводится анализ влияния сетевой структуры на такие компоненты модели как удельные издержки производства, объемы производства и инвестиций, прибыли фирм.

В п. 2 приводится динамическая сетевая игра с положительными экстерналиями, направленными на получение материального блага — уменьшение производственных (удельных) издержек. За основу берется классическая модель олигополии Курно [17], имеющая следующее краткое описание. Пусть $N = \{1, \dots, n\}, n \ge 2,$ — конечное множество фирм-производителей товара на общем конкурентном рынке сбыта. Каждая фирма $i \in N$ принимает решение о производимом объеме $u_i \in U_i \subset \text{Comp } \mathbb{R}_+$. Тогда $\sum_{i \in N} u_i$ показывает суммарный объем товара на рынке. Предполагается, что обратная функция спроса известна и задана в линейном виде $P = p - \sum_{i \in N} u_i$, где p > 0 — максимально возможная стоимость единицы товара (принимается фиксированной и постоянной). Дополнительно будем полагать неотрицательность спроса. Чаще всего постоянные издержки фирм в исследовании модели не учитываются, поскольку не оказывают влияния на стратегические решения, а удельные издержки c_i фирмы считаются фиксированными. Прибыль фирмы i обусловливается функцией $F_i(u_1,\ldots,u_n)=(p-\sum_{j\in N}u_j)u_i-c_iu_i$. В модели Курно равновесием по Нэшу является такой набор $u^{\rm N}=(u_1^{\rm N},\ldots,u_n^{\rm N}),$ что для любых $i\in N$ и $u_i\in U_i$ выполняется неравенство $F_i(u_1^{\rm N},\ldots,u_{i-1}^{\rm N},u_i,u_{i+1}^{\rm N},\ldots,u_n^{\rm N})\leqslant F_i(u_1^{\rm N},\ldots,u_n^{\rm N}).$ Для каждой фирмы i легко определить равновесные по Нэшу объемы производства: $u_i^{\rm N} = (p - nc_i + \sum_{j \neq i} c_j)/(n+1)$. Представленная базовая модель конкуренции дополняется возможностью фирм влиять на состояние своих производственных издержек посредством инвестиционных действий, реализуемых на заданных сетевых структурах, и далее исследуется как динамическая игра в дискретном времени.

В п. 3 изучается равновесное поведение фирм при использовании двух классов стратегий с экзогенно развивающейся в дискретном времени сетевой структурой; в п. 4 — влияние сетевых параметров игры на равновесие по Нэшу. Представлено сравнение решений игры при реализации равновесий из двух классов.

2. Инвестиционная модификация олигополии Курно с сетевым взаимодействием. В дополнение к классической модели Курно, представленной в п. 1, рассмотрим олигополию как динамическую игру в дискретном времени со множеством периодов $\mathcal{T} = \{0,1,\ldots,T\},\ T\geqslant 2$. В реальных условиях удельные издержки (далее издержки) фирмы имеют динамический характер. Будем рассматривать издержки фирмы i, обозначаемые за $c_i(t)\geqslant 0$, как величину, имеющую тенденцию меняться со временем. Управление фирмой состоянием своих издержек может обеспечить ей повышение конкурентоспособности и рентабельности бизнеса, что, в свою

очередь, представляется потенциально значимым приложением теории динамических игр. Пусть набор $c(t)=(c_1(t),\ldots,c_n(t))'$ обозначает состояние издержек фирм в момент времени $t\in\mathcal{T}$ при заданных начальных издержках $c(0)\equiv c_0=(c_{10},\ldots,c_{n0})'$. Уравнение динамики издержек запишем в виде

$$c(t+1) = f(t, g(t), c(t), y_1(t), \dots, y_n(t)), \quad t \in \mathcal{T} \setminus \{T\},\$$

здесь $y_i(t) \in Y_i \subset \text{Сотр} \mathbb{R}_+$ — инвестиционные усилия (далее инвестиции) фирмы i в момент времени t, в денежном эквиваленте определяемые значением выражения $\frac{\varepsilon_i(t)}{2}y_i^2(t)$, при заданном текущем значении $\varepsilon_i(t)>0$, а само правило f — непрерывно дифференцируемая по издержкам и инвестициям функция. Отдельно охарактеризуем параметр g(t). Пусть фирмы инвестируют в свои производственные технологии. Результат влияния инвестиций одной фирмы на другую может быть описан графом. Для этого отождествим множество фирм с вершинами некоторого графа (N,g(t)), в котором $g(t) \subseteq N \times N$ — множество связей, представленное ребрами графа и определяющее его структуру в момент времени $t \in \mathcal{T} \setminus \{T\}$. В целях упрощения граф (сеть) в момент времени t запишем как g(t). При этом, оценивая связь между фирмами $i,j \in N, j \neq i$, обозначаемую за (i,j), будем полагать, что (i,j) = (j,i) и $(i,j) \in g(t)$ тогда и только тогда, когда $g_{ij}(t) = g_{ji}(t) = 1$, где $g_{ij}(t)$ и $g_{ji}(t)$ — элементы бинарной матрицы смежности, задающие неориентированную сеть g(t) без петель.

Экзогенное формирование сетевой структуры игры подразумевает, что в любой момент времени $t \in \mathcal{T} \setminus \{T\}$ сеть является заданной.

Для фирмы $i \in N$ правило изменения ее издержек во времени зададим следующим образом:

$$c_i(t+1) = \delta c_i(t) - \sum_{j \in N} \mu_{ij}(t) y_j(t), \quad t \in \mathcal{T} \setminus \{T\}, \quad c_i(0) = c_{i0},$$
 (1)

где

$$\mu_{ij}(t) = \begin{cases} \alpha_i(t), & j = i, \\ \beta_{ij}(t) g_{ij}(t) + \gamma_{ij}(t)(1 - g_{ij}(t)), & j \neq i. \end{cases}$$

Параметр $\delta \geqslant 1$ характеризует скорость изменения издержек фирмы с течением времени ввиду возможного устаревания используемых технологий производства при отсутствии дополнительных инвестиций в их модернизацию. Параметр $\alpha_i(t)$ отражает эффект от инвестиций самой фирмы в текущий момент, а $\beta_{ij}(t)$ и $\gamma_{ij}(t)$ — текущие эффекты от инвестиций фирмы-соседа $j \in N_i(g(t)) := \{r \in N : (i,r) \in g(t)\}$ в сети g(t) и фирмы $j \notin N_i(g(t)) \cup \{i\}$, не являющейся соседом в сети соответственно. Дополнительно предполагается выполнение соотношений $\alpha_i(t) > \beta_{ij}(t) > \gamma_{ij}(t) \geqslant 0$ для любых $i, j \in N$.

Допустимым поведением фирмы $i \in N$ в момент времени $t \in \mathcal{T} \setminus \{T\}$ назовем пару действий $(u_i(t), y_i(t)) \in U_i \times Y_i$, где $u_i(t)$ будем интерпретировать как производственное поведение фирмы в момент t, а $y_i(t)$ будем интерпретировать как инвестиционное поведение фирмы в этот момент. Введем дополнительные обозначения: $u(t) = (u_1(t), \ldots, u_n(t)), \ y(t) = (y_1(t), \ldots, y_n(t)), \ u = (u(0), \ldots, u(T-1)), \ y = (y(0), \ldots, y(T-1)).$

Прибыль фирмы i в неокончательный момент времени $t \in \mathcal{T} \setminus \{T\}$ запишем как

$$F_i(t, c_i(t), u(t), y_i(t)) = \left(p - \sum_{i \in N} u_j(t)\right) u_i(t) - c_i(t) u_i(t) - \frac{\varepsilon_i(t)}{2} y_i^2(t),$$

т. е. как разность ее текущей выручки, формируемой согласно традиционной модели конкуренции Курно с линейной обратной функцией спроса, и текущих затрат, которые включают производственные затраты и инвестиции в производство. В терминальный момент времени прибыль фирмы определим ее остаточной стоимостью вида $\Phi_i(T,c_i(T))=\eta_i-\eta c_i(T)$, где $\eta>0$ — коэффициент ликвидности производства, а $\eta_i>0$ — максимальная рыночная стоимость производства ($\eta_i>\eta p$). Тогда общую прибыль фирмы за всю продолжительность игры зададим функционалом

$$J_i(c_0, u, y) = \sum_{t=0}^{T-1} \rho^t F_i(t, c_i(t), u(t), y_i(t)) + \rho^T \Phi_i(T, c_i(T)),$$
 (2)

в котором $\rho \in (0,1]$ — коэффициент дисконтирования, являющийся общим для всех фирм и постоянным во времени. В такой постановке динамическая модель конкурентного производства с инвестированием есть линейно-квадратичная игра в дискретном времени с n-мерной переменной состояния и двумерными наборами действий. Отметим, что при экзогенном формировании сети издержки фирмы на поддержание связей не влияют на ее выбор допустимого поведения, поскольку являются постоянными. По этой причине затраты подобного типа в модели не рассматриваются.

Опишем поведение фирм в динамике. В начальный момент времени при общензвестной сети g(0) и начальных издержках c_0 фирмы одновременно и независимо друг от друга выбирают свои допустимые действия — пары $(u_i(0), y_i(0)), i \in N,$ — каждая из них решает какой объем продукции произвести и какой объем инвестиций сделать в текущий момент времени. Такой выбор приносит фирме i прибыль $F_i(0, c_{i0}, u(0), y_i(0))$. Далее издержки меняются, согласно правилу (1), и становятся равными $c_i(1), i \in N$. В очередной момент времени $t \in \mathcal{T} \setminus \{T\}$ при общеизвестной сети g(t) фирмы одновременно и независимо друг от друга выбирают допустимые действия — текущие объемы производства и инвестиций $(u_i(t), y_i(t)), i \in N$, что приводит к прибыли $F_i(t, c_i(t), u(t), y_i(t))$ и издержкам $c_i(t+1)$ фирмы i в следующем периоде. В терминальный момент времени t = T каждая фирма получает остаточную стоимость $\Phi_i(T, c_i(T))$ и общую прибыль, рассчитываемую в соответствии с (2). После этого процесс заканчивается.

Для представления динамического характера взаимодействия фирм в виде игры в нормальной форме, согласно [18], обозначим через \mathbf{u}_i стратегию фирмы $i \in N$, предписывающую ей однозначный выбор допустимого поведения в зависимости от текущей информации, а множество стратегий этой фирмы обозначим через \mathbf{U}_i . Ввиду однозначности выбора действий, предписываемых стратегиями, определим функцию выигрыша фирмы i как $\mathbf{J}_i(\mathbf{u}) = J_i(c_0,u,y)$, где $\mathbf{u} = (\mathbf{u}_1,\dots,\mathbf{u}_n)$ обозначает набор стратегий фирм.

Определение. Динамической моделью конкурентного производства с инвестированием при сетевом взаимодействии фирм назовем игру $\Gamma = \langle N, \{U_i\}_{i \in N}, \{J_i\}_{i \in N} \rangle$.

3. Равновесие по Нэшу. В игре Γ равновесием по Нэшу является набор стратегий $\mathbf{u}^{\mathrm{N}}=(\mathbf{u}_{1}^{\mathrm{N}},\ldots,\mathbf{u}_{n}^{\mathrm{N}}),$ если для любого $i\in N$ выполнено $\mathbf{u}_{i}^{\mathrm{N}}=\arg\max_{\mathbf{u}_{i}\in \mathbf{U}_{i}}\mathbf{J}_{i}(\mathbf{u}_{i},\mathbf{u}_{-i}^{\mathrm{N}}),$ где набор стратегий $(\mathbf{u}_{i},\mathbf{u}_{-i}^{\mathrm{N}})$ отличается от \mathbf{u}^{N} лишь тем, что фирма i вместо стратегии $\mathbf{u}_{i}^{\mathrm{N}}$ использует \mathbf{u}_{i} . Для того чтобы найти равновесие по Нэшу, важно понимать, на какую информацию опираются фирмы при выборе стратегий. Рассмотрим и проанализируем возможные варианты. Будем считать, что фирмы могут придерживаться программных или позиционных стратегий, обозначаемых через $\mathbf{u}_{i}^{\mathrm{OL}}$ и $\mathbf{u}_{i}^{\mathrm{FB}}$ соответственно. В первом случае допустимое поведение предписывается текущему неокончательному моменту времени и набору начальных издержек, а во втором —

текущему неокончательному моменту времени и набору издержек в этот момент. Более формально программной стратегией $\mathbf{u}_i^{\mathrm{OL}}$ фирмы $i \in N$ назовем правило $\mathbf{u}_i^{\mathrm{OL}}(t,c_0):\mathcal{T}\setminus\{T\}\mapsto U_i\times Y_i$, которое каждому неокончательному моменту времени и начальным значениям издержек однозначным образом ставит в соответствие допустимое поведение $\mathbf{u}_i^{\mathrm{OL}}(t,c_0)=(\mathbf{u}_{i1}^{\mathrm{OL}}(t,c_0),\mathbf{u}_{i2}^{\mathrm{OL}}(t,c_0))=(u_i(t),y_i(t)).$ Позиционной стратегией $\mathbf{u}_i^{\mathrm{FB}}$ фирмы i назовем правило $\mathbf{u}_i^{\mathrm{FB}}(t,c):\mathcal{T}\setminus\{T\}\times\mathbb{R}^n_+\mapsto U_i\times Y_i$, которое каждому неокончательному моменту времени и набору издержек $c(t)=(c_1(t),\ldots,c_n(t))'$ однозначным образом ставит в соответствие допустимое поведение $\mathbf{u}_i^{\mathrm{FB}}(t,c(t))=(\mathbf{u}_{i1}^{\mathrm{OL}}(t,c(t)),\mathbf{u}_{i2}^{\mathrm{OL}}(t,c(t)))=(u_i(t),y_i(t)).$

В дальнейшем будем использовать следующие обозначения. Пусть 1 обозначает n-мерный вектор, состоящий из единиц, e_i — единичный n-мерный вектор с i-й компонентой, равной единице, $i \in N$, а I — единичная $n \times n$ матрица. Пусть далее $\mu_i(t) = (\mu_{1i}(t), \dots, \mu_{ni}(t))'$ для $i \in N$.

3.1. Равновесие по Нэшу в программных стратегиях. Для определения равновесия по Нэшу в программных стратегиях воспользуемся принципом максимума Понтрягина [18, 19]. Равновесие можно найти, используя следующую теорему.

Теорема 1. Пусть $\ell_{i1}(t) \in \mathbb{R}^n$, $\ell_{i2}(t) \in \mathbb{R}$ удовлетворяют рекуррентным соотношениям

$$\ell_{i1}(t) = \begin{cases} \delta^2 M(t+1)^{-1} \ell_{i1}(t+1) - \rho^t \frac{\mathbf{1} - (n+1)e_i}{n+1}, & t \neq T, \\ 0, & t = T, \end{cases}$$
 (3)

$$\ell_{i2}(t) = \begin{cases} \delta \left[\ell_{i1}(t+1)'M(t+1)^{-1}m(t+1) + \ell_{i2}(t+1) \right] - \rho^t \frac{p}{n+1}, & t \neq T, \\ -\rho^T \eta, & t = T, \end{cases}$$
(4)

для всех фирм $i \in N$, где матрица M(t) и вектор m(t) задаются согласно правилу: $M(t) = I - \sum_{j \in N} \frac{\alpha_j(t-1)}{\rho^{t-1}\varepsilon_j(t-1)} \mu_j(t-1) \ell_{j1}(t)', \ m(t) = \sum_{j \in N} \frac{\alpha_j(t-1)}{\rho^{t-1}\varepsilon_j(t-1)} \mu_j(t-1) \ell_{j2}(t).$ Если матрицы M(t) обратимы для всех $t \neq 0$, то набор стратегий $\mathbf{u}^{\mathrm{OLN}} = (\mathbf{u}_1^{\mathrm{OLN}}, \dots, \mathbf{u}_n^{\mathrm{OLN}})$ является единственным равновесием по Нэшу в программных стратегиях, компоненты которого $\mathbf{u}_i^{\mathrm{OLN}}(t, c_0), \ i \in N, \ t \in \mathcal{T} \setminus \{T\}$, имеют вид

$$\mathbf{u}_{i1}^{\text{OLN}}(t, c_0) = \frac{p + (\mathbf{1} - (n+1)e_i)'c^{\text{OLN}}(t)}{n+1},\tag{5}$$

$$\mathbf{u}_{i2}^{\text{OLN}}(t,c_0) = -\frac{\alpha_i(t)}{\rho^t \varepsilon_i(t)} \Big(\ell_{i1}(t+1)' M(t+1)^{-1} (\delta c^{\text{OLN}}(t) + m(t+1)) + \ell_{i2}(t+1) \Big), \quad (6)$$

где текущие равновесные издержки $c^{\mathrm{OLN}}(t)$ последовательно находятся из уравнения

$$c^{\text{OLN}}(t) = M(t)^{-1} (\delta c^{\text{OLN}}(t-1) + m(t)), \quad t \in \mathcal{T} \setminus \{0\}, \quad c^{\text{OLN}}(0) = c_0.$$
 (7)

Доказательство. Введем для фирмы $i \in N$ функцию Гамильтона

$$\mathcal{H}_{i}(t,c(t),u(t),y(t),\psi_{i}(t+1)) = \rho^{t} \left[\left(p - \sum_{j \in N} u_{j}(t) \right) u_{i}(t) - c_{i}(t) u_{i}(t) - \frac{\varepsilon_{i}(t)}{2} y_{i}^{2}(t) \right] +$$

$$+ \sum_{j \in N} \psi_{ij}(t+1) \left[\delta c_{j}(t) - \sum_{r \in N} \mu_{jr}(t) y_{r}(t) \right], \quad t \in \mathcal{T} \setminus \{T\},$$

здесь $\psi_i(t) = (\psi_{i1}(t), \dots, \psi_{in}(t))'$ — вектор сопряженных переменных. Следуя [18], если набор стратегий $\mathbf{u}^{\mathrm{OLN}}(t, c_0)$ является равновесием по Нэшу, существуют ненулевые сопряженные переменные $\psi_i(t), t \in \mathcal{T} \setminus \{0\}, i \in N$, удовлетворяющие соотношениям

$$\begin{split} \mathbf{u}_{i1}^{\text{OLN}}(t,c_0) &= \frac{p - c_i(t) - \sum_{j \neq i} \mathbf{u}_{j1}^{\text{OLN}}(t,c_0)}{2}, \\ \mathbf{u}_{i2}^{\text{OLN}}(t,c_0) &= -\frac{\sum_{j \in N} \psi_{ij}(t+1)\mu_{ji}(t)}{\rho^t \varepsilon_i(t)}, \\ \psi_{ij}(t) &= \begin{cases} -\rho^t \mathbf{u}_{i1}^{\text{OLN}}(t,c_0) + \delta \psi_{ii}(t+1), & j = i, \ t \neq T, \\ -\rho^T \eta, & j = i, \ t = T, \\ \delta \psi_{ij}(t+1), & j \neq i, \ t \neq T, \\ 0, & j \neq i, \ t = T, \end{cases} \\ c_i(t+1) &= \delta c_i(t) - \sum_{j \in N} \mu_{ij}(t) \mathbf{u}_{j2}^{\text{OLN}}(t,c_0), & t \neq T, \quad c_i(0) = c_{i0}, \end{split}$$

из которых сразу заключаем, что $\psi_{ij}(t)=0$ для всех $i\neq j$ и t. С учетом этого и некоторых преобразований получаем, что

$$\mathbf{u}_{i1}^{\text{OLN}}(t, c_0) = \frac{p - (n+1)c_i(t) + \sum_{j \in N} c_j(t)}{n+1},\tag{8}$$

$$\mathbf{u}_{i2}^{\text{OLN}}(t, c_0) = -\frac{\alpha_i \psi_{ii}(t+1)}{\rho^t \varepsilon_i(t)},\tag{9}$$

где первое выражение совпадет с (5). Ввиду строгой вогнутости функции Гамильтона \mathcal{H}_i по набору $(u_i(t), y_i(t))$ (главные миноры матрицы Гессе равны $-2\rho^t$ и $2\varepsilon_i(t)\rho^{2t}$ соответственно), ее максимизация по данным переменным дает единственную точку максимума, удовлетворяющую (8), (9).

Сопряженные переменные будем искать в линейном по издержкам виде $\psi_{ii}(t) = \ell_{i1}(t)'c(t) + \ell_{i2}(t)$ и покажем, что $\ell_{i1}(t)$ и $\ell_{i2}(t)$ удовлетворяют (3), (4). С учетом (6) и представления сопряженных переменных уравнение динамики издержек можно записать в виде $c(t+1) = M(t+1)^{-1}(\delta c(t) + m(t+1)), t \in \mathcal{T} \setminus \{T\}$, что совпадает с (7). Тогда с учетом (8) и (9) заключаем, что

$$\psi_{ii}(t) = \ell_{i1}(t)'c(t) + \ell_{i2}(t) = -\rho^{t} \frac{p + (1 - (n+1)e_{i})'c(t)}{n+1} + \delta[\ell_{i1}(t+1)'c(t+1) + \ell_{i2}(t+1)] =$$

$$= -\rho^{t} \frac{p + (1 - (n+1)e_{i})'c(t)}{n+1} + \delta[\ell_{i1}(t+1)'M(t+1)^{-1}(\delta c(t) + m(t+1)) + \ell_{i2}(t+1)].$$

В соответствии с методом неопределенных коэффициентов получаем (3), (4). Теорема доказана.

Пример 1. Проиллюстрируем результаты теоремы 1 на трехпериодной модели конкурентного производства с инвестированием, т. е. T=3. Рассмотрим случай взаимодействия трех и четырех фирм (n=3 или n=4) и найдем их равновесное поведение при четырех разных сетевых структурах, каждая из которых остается неизменной на протяжении всей игры (для каждого варианта j=1,2,3,4 сетевой структуры $g(t)=g_j, t\in \mathcal{T}$). Остальные параметры для моделирования выберем следующими: $p=500, \, \varepsilon_i(t)=1000$ и $\eta_i=100\,000$ положим одинаковыми у всех фирм,

 $\eta=1000$; параметр технологического устаревания $\delta=1.07$; начальные издержки фирм считаем также одинаковыми и равными $c_{i0}=100$, коэффициент дисконтирования $\rho=0.95$; параметры сетевого влияния $\alpha_i(t)=1.8$, $\beta_{ij}(t)=1$, $\gamma_{ij}(t)=0.5$ тоже одинаковые у всех фирм и постоянны во времени.

 $\it Taблица~1.$ Равновесие по Нэшу $\it u^{OLN}$ для четырех видов сетевых структур и соответствующие прибыли

Величина	Сеть g_1 $\frac{l}{3}$ $\frac{4}{3}$				Сеть g_2 l d d			
	t = 0	t = 1	t=2	t=3	t = 0	t = 1	t=2	t = 3
$u_1^{\text{OLN}}(t)$	80.000	81.793	83.448	_	80.000	81.181	82.230	_
$u_2^{\text{OLN}}(t)$	80.000	79.744	79.375	-	80.000	80.155	80.192	-
$u_3^{\text{OLN}}(t)$	80.000	79.744	79.375	-	80.000	80.155	80.192	-
$u_4^{ m OLN}(t)$	80.000	79.744	79.375	-	80.000	79.123	78.144	-
$y_1^{\text{OLN}}(t)$	2.052	1.881	1.710	_	2.049	1.879	1.710	_
$y_2^{\text{OLN}}(t)$	2.041	1.874	1.710	_	2.043	1.875	1.710	_
$y_3^{\text{OLN}}(t)$	2.041	1.874	1.710	_	2.043	1.875	1.710	_
$y_3^{\text{OLN}}(t) \\ y_4^{\text{OLN}}(t)$	2.041	1.874	1.710	-	2.038	1.872	1.710	-
$c_1 = c_1 = c_1 = c_1$	100.000	97.183	94.978	93.419	100.000	98.207	97.013	96.451
$c_2^{\mathrm{OLN}}(t)$	100.000	99.233	99.051	99.487	100.000	99.233	99.051	99.486
$c_3^{\mathrm{OLN}}(t)$	100.000	99.233	99.051	99.487	100.000	99.233	99.051	99.486
$c_4^{OLN}(t)$	100.000	99.233	99.051	99.487	100.000	100.264	101.098	102.532
$P^{\text{OLN}}(t)$	180.000	178.976	178.426	_	180.000	179.387	179.243	_
$J_1^{ m OLN}$		19 577	7.792			16 71	1.687	
$J_2^{ m OLN}$		13496	6.491		13669.861			
$J_3^{ m OLN}$		13496	6.491		13 669.861			
$J_4^{ m OLN}$		13496	6.491			1062	7.026	
	Сеть g_3 1 4			Сеть g_4 $\frac{2}{3}$				
Величина	Сеть	$g_3 \stackrel{l}{\smile}$, 4		Сеті	g_4	2	
Величина			3	+ - 3			3 1 + - 2	t — 3
	t = 0	t=1	t=2	t=3	t = 0	t = 1	t = 2	t = 3
$u_1^{\text{OLN}}(t)$	t = 0 80.000	t = 1 80.769	t = 2 81.413	-	t = 0 100.000	t = 1 100.787	101.384	t = 3
$u_1^{\text{OLN}}(t) \\ u_2^{\text{OLN}}(t)$	t = 0 80.000 80.000	t = 1 80.769 80.769	t = 2 81.413 81.413	t = 3	t = 0 100.000 100.000	t = 1 100.787 99.727	101.384 99.294	t = 3
$u_1^{\text{OLN}}(t)$ $u_2^{\text{OLN}}(t)$ $u_2^{\text{OLN}}(t)$	$t = 0 \\ 80.000 \\ 80.000 \\ 80.000$	$t = 1 \\ 80.769 \\ 80.769 \\ 79.742$	t = 2 81.413 81.413 79.373	-	t = 0 100.000 100.000 100.000	t = 1 100.787 99.727 99.727	101.384 99.294 99.294	t = 3
$u_1^{\text{OLN}}(t) \\ u_2^{\text{OLN}}(t) \\ u_3^{\text{OLN}}(t) \\ u_4^{\text{OLN}}(t)$	t = 0 80.000 80.000 80.000 80.000	t = 1 80.769 80.769 79.742 79.742	$\begin{array}{c c} t = 2 \\ \hline 81.413 \\ 81.413 \\ \hline 79.373 \\ \hline 79.373 \\ \end{array}$	-	t = 0 100.000 100.000 100.000 $-$	t = 1 100.787 99.727 99.727 -	101.384 99.294 99.294	t = 3
$u_1^{\text{OLN}}(t)$ $u_2^{\text{OLN}}(t)$ $u_3^{\text{OLN}}(t)$ $u_4^{\text{OLN}}(t)$ $u_4^{\text{OLN}}(t)$	t = 0 80.000 80.000 80.000 80.000 2.047	t = 1 80.769 80.769 79.742 79.742 1.877	$\begin{array}{c} t = 2 \\ 81.413 \\ 81.413 \\ 79.373 \\ 79.373 \\ 1.710 \end{array}$	-	t = 0 100.000 100.000 100.000 $-$ 2.115	t = 1 100.787 99.727 99.727 $-$ 1.912	101.384 99.294 99.294 - 1.710	t = 3
$\begin{array}{c} u_{1}^{\mathrm{OLN}}(t) \\ u_{2}^{\mathrm{OLN}}(t) \\ u_{2}^{\mathrm{OLN}}(t) \\ u_{3}^{\mathrm{OLN}}(t) \\ u_{4}^{\mathrm{OLN}}(t) \\ u_{2}^{\mathrm{OLN}}(t) \\ u_{2}^{\mathrm{OLN}}(t) \end{array}$	t = 0 80.000 80.000 80.000 80.000 2.047 2.047	t = 1 80.769 80.769 79.742 79.742 1.877	$\begin{array}{c} t = 2 \\ 81.413 \\ 81.413 \\ 79.373 \\ 79.373 \\ 1.710 \\ 1.710 \end{array}$	-	t = 0 100.000 100.000 100.000 $-$ 2.115 2.110	t = 1 100.787 99.727 99.727 $-$ 1.912 1.908	101.384 99.294 99.294 - 1.710 1.710	t = 3
$\begin{array}{c} u_1^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ y_1^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \end{array}$	t = 0 80.000 80.000 80.000 80.000 2.047 2.047 2.041	t = 1 80.769 80.769 79.742 79.742 1.877 1.874	$\begin{array}{c} t = 2 \\ 81.413 \\ 81.413 \\ 79.373 \\ 79.373 \\ \hline 1.710 \\ 1.710 \\ 1.710 \\ \end{array}$	-	t = 0 100.000 100.000 100.000 $-$ 2.115	t = 1 100.787 99.727 99.727 $-$ 1.912	101.384 99.294 99.294 - 1.710	t = 3
$\begin{array}{c} u_1^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_3^{\rm OLN}(t) \\ u_3^{\rm OLN}(t) \\ v_4^{\rm OLN}(t) \\ \hline y_1^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_3^{\rm OLN}(t) \\ y_4^{\rm OLN}(t) \end{array}$	t = 0 80.000 80.000 80.000 80.000 2.047 2.047 2.041 2.041	$t = 1 \\ 80.769 \\ 80.769 \\ 79.742 \\ 79.742 \\ 1.877 \\ 1.877 \\ 1.874 \\ 1.874$	$\begin{array}{c} t=2\\ 81.413\\ 81.413\\ 79.373\\ 79.373\\ \hline 1.710\\ 1.710\\ 1.710\\ 1.710\\ \end{array}$	- - - - -	t = 0 100.000 100.000 100.000 $-$ 2.115 2.110 2.110	$ t = 1 \\ 100.787 \\ 99.727 \\ 99.727 \\ - \\ 1.912 \\ 1.908 \\ 1.908 \\ - $	101.384 99.294 99.294 - 1.710 1.710 1.710	- - - - - -
$\begin{array}{c} u_1^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_3^{\rm OLN}(t) \\ u_3^{\rm OLN}(t) \\ v_4^{\rm OLN}(t) \\ \hline y_2^{\rm OLN}(t) \\ y_3^{\rm OLN}(t) \\ y_4^{\rm OLN}(t) \\ \hline c_1^{\rm OLN}(t) \\ \end{array}$	t = 0 80.000 80.000 80.000 80.000 2.047 2.047 2.041 2.041 100.000	$t = 1 \\ 80.769 \\ 80.769 \\ 79.742 \\ 79.742 \\ 1.877 \\ 1.877 \\ 1.874 \\ 1.874 \\ 98.208$	$\begin{array}{c} t=2\\ 81.413\\ 81.413\\ 79.373\\ 79.373\\ \hline 1.710\\ 1.710\\ 1.710\\ 1.710\\ \hline 97.015\\ \end{array}$	- - - - - - - - - - 96.459	t = 0 100.000 100.000 100.000 $-$ 2.115 2.110 2.110 $-$ 100.000		101.384 99.294 99.294 - 1.710 1.710 1.710 - 98.643	- - - - - - - 99.050
$\begin{array}{c} u_1^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_3^{\rm OLN}(t) \\ u_4^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_3^{\rm OLN}(t) \\ y_4^{\rm OLN}(t) \\ c_2^{\rm OLN}(t) \\ c_2^{\rm OLN}(t) \\ c_2^{\rm OLN}(t) \\ \end{array}$	t = 0 80.000 80.000 80.000 80.000 2.047 2.047 2.041 100.000 100.000	$t = 1 \\ 80.769 \\ 80.769 \\ 79.742 \\ 79.742 \\ 1.877 \\ 1.877 \\ 1.874 \\ 1.874 \\ 98.208 \\ 98.208$	$\begin{array}{c} t=2\\ 81.413\\ 81.413\\ 79.373\\ 79.373\\ 1.710\\ 1.710\\ 1.710\\ 1.710\\ 97.015\\ 97.015\\ \end{array}$	- - - - - - - - - 96.459	t = 0 100.000 100.000 100.000 $-$ 2.115 2.110 2.110 $-$ 100.000 100.000	$ begin{tabular}{l} $t=1$ \\ 100.787 \\ 99.727 \\ 99.727 \\ - \\ 1.912 \\ 1.908 \\ 1.908 \\ - \\ 98.972 \\ 100.031 \\ \hline \end{tabular} $	101.384 99.294 99.294 - 1.710 1.710 1.710 - 98.643 100.734	- - - - - - - - 99.050 102.142
$\begin{array}{c} u_1^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_3^{\rm OLN}(t) \\ u_4^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_3^{\rm OLN}(t) \\ y_4^{\rm OLN}(t) \\ c_2^{\rm OLN}(t) \\ c_2^{\rm OLN}(t) \\ c_2^{\rm OLN}(t) \\ \end{array}$	$\begin{array}{c} t=0\\ 80.000\\ 80.000\\ 80.000\\ 80.000\\ 2.047\\ 2.047\\ 2.041\\ 2.041\\ 100.000\\ 100.000\\ 100.000\\ \end{array}$	t = 1 80.769 80.769 79.742 79.742 1.877 1.874 1.874 98.208 98.208 99.235	$\begin{array}{c} t=2\\ 81.413\\ 81.413\\ 79.373\\ 79.373\\ \hline 1.710\\ 1.710\\ 1.710\\ 1.710\\ 97.015\\ 99.056\\ \end{array}$	- - - - - - - - 96.459 96.459 99.492	t = 0 100.000 100.000 100.000 $-$ 2.115 2.110 2.110 $-$ 100.000		101.384 99.294 99.294 - 1.710 1.710 1.710 - 98.643	- - - - - - - 99.050
$\begin{array}{c} u_1^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_3^{\rm OLN}(t) \\ u_4^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_3^{\rm OLN}(t) \\ z_2^{\rm OLN}(t) \\ z_2^{\rm OLN}(t) \\ z_3^{\rm OLN}(t) \\ z_2^{\rm OLN}(t) \\ z_3^{\rm OLN}(t) \\ z_4^{\rm OLN}(t) \\ z_5^{\rm OLN}(t) \\ z_5^{\rm OLN}(t) \\ z_5^{\rm OLN}(t) \\ z_5^{\rm OLN}(t) \\ \end{array}$	$\begin{array}{c} t=0\\ 80.000\\ 80.000\\ 80.000\\ 80.000\\ \hline 2.047\\ 2.047\\ 2.041\\ \hline 2.041\\ \hline 100.000\\ 100.000\\ \hline 100.000\\ \hline 100.000\\ \hline \end{array}$	t = 1 80.769 80.769 79.742 79.742 1.877 1.874 1.874 98.208 98.208 99.235 99.235	$\begin{array}{c} t=2\\ 81.413\\ 81.413\\ 79.373\\ 79.373\\ 1.710\\ 1.710\\ 1.710\\ 1.710\\ 97.015\\ 99.056\\ 99.056\\ \end{array}$	- - - - - - - - - 96.459	$\begin{array}{c} t = 0 \\ \hline 100.000 \\ 100.000 \\ 100.000 \\ \hline - \\ \hline 2.115 \\ 2.110 \\ \hline 2.110 \\ \hline - \\ \hline 100.000 \\ 100.000 \\ \hline - \\ \hline \end{array}$	$ t = 1 \\ 100.787 \\ 99.727 \\ 99.727 \\ - \\ 1.912 \\ 1.908 \\ 1.908 \\ - \\ 98.972 \\ 100.031 \\ 100.031 \\ - $	101.384 99.294 99.294 - 1.710 1.710 1.710 - 98.643 100.734	- - - - - - - - 99.050 102.142
$\begin{array}{c} u_1^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_3^{\rm OLN}(t) \\ u_3^{\rm OLN}(t) \\ u_4^{\rm OLN}(t) \\ \\ y_2^{\rm OLN}(t) \\ y_3^{\rm OLN}(t) \\ y_3^{\rm OLN}(t) \\ y_4^{\rm OLN}(t) \\ c_2^{\rm OLN}(t) \\ c_3^{\rm OLN}(t) \\ c_3^{\rm OLN}(t) \\ c_4^{\rm OLN}(t) \\ \\ \end{array}$	$\begin{array}{c} t=0\\ 80.000\\ 80.000\\ 80.000\\ 80.000\\ 2.047\\ 2.047\\ 2.041\\ 2.041\\ 100.000\\ 100.000\\ 100.000\\ \end{array}$	t = 1 80.769 80.769 79.742 79.742 1.877 1.874 1.874 98.208 98.208 99.235 99.235 178.977	$\begin{array}{c} t=2\\ 81.413\\ 81.413\\ 79.373\\ 79.373\\ 1.710\\ 1.710\\ 1.710\\ 1.710\\ 97.015\\ 97.015\\ 99.056\\ 99.056\\ 178.428\\ \end{array}$	- - - - - - - - 96.459 96.459 99.492	t = 0 100.000 100.000 100.000 $-$ 2.115 2.110 2.110 $-$ 100.000 100.000	$\begin{array}{c} t=1\\ 100.787\\ 99.727\\ 99.727\\ -\\ 1.912\\ 1.908\\ 1.908\\ -\\ 98.972\\ 100.031\\ 100.031\\ -\\ 199.759\\ \end{array}$	101.384 99.294 99.294 - 1.710 1.710 1.710 - 98.643 100.734 100.734 - 200.028	- - - - - - - - 99.050 102.142
$\begin{array}{c} u_1^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_3^{\rm OLN}(t) \\ u_4^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_3^{\rm OLN}(t) \\ y_4^{\rm OLN}(t) \\ c_2^{\rm OLN}(t) \\ c_3^{\rm OLN}(t) \\ c_3^{\rm OLN}(t) \\ c_3^{\rm OLN}(t) \\ c_3^{\rm OLN}(t) \\ \end{array}$	$\begin{array}{c} t=0\\ 80.000\\ 80.000\\ 80.000\\ 80.000\\ \hline 2.047\\ 2.047\\ 2.041\\ \hline 2.041\\ \hline 100.000\\ 100.000\\ \hline 100.000\\ \hline 100.000\\ \hline \end{array}$	t = 1 80.769 80.769 79.742 79.742 1.877 1.874 1.874 98.208 98.208 99.235 99.235 178.977 16532	$\begin{array}{c} 3\\ t=2\\ 81.413\\ 81.413\\ 79.373\\ 79.373\\ \hline 1.710\\ 1.710\\ 1.710\\ 1.710\\ 97.015\\ 99.056\\ 99.056\\ 178.428\\ 2.843\\ \end{array}$	- - - - - - - - 96.459 96.459 99.492	$\begin{array}{c} t = 0 \\ \hline 100.000 \\ 100.000 \\ 100.000 \\ \hline - \\ \hline 2.115 \\ 2.110 \\ \hline 2.110 \\ \hline - \\ \hline 100.000 \\ 100.000 \\ \hline - \\ \hline \end{array}$	$\begin{array}{c} t=1\\ 100.787\\ 99.727\\ 99.727\\ -\\ 1.912\\ 1.908\\ 1.908\\ -\\ 98.972\\ 100.031\\ 100.031\\ -\\ 199.759\\ 2444\\ \end{array}$	101.384 99.294 99.294 - 1.710 1.710 1.710 - 98.643 100.734 100.734 - 200.028 8.066	- - - - - - - - 99.050 102.142
$\begin{array}{c} u_1^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_3^{\rm OLN}(t) \\ u_4^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_3^{\rm OLN}(t) \\ y_4^{\rm OLN}(t) \\ c_2^{\rm OLN}(t) \\ c_2^{\rm OLN}(t) \\ c_3^{\rm OLN}(t) \\ c_4^{\rm OLN}(t) \\ \hline p_{\rm OLN}(t) \\$	$\begin{array}{c} t=0\\ 80.000\\ 80.000\\ 80.000\\ 80.000\\ \hline 2.047\\ 2.047\\ 2.041\\ \hline 2.041\\ \hline 100.000\\ 100.000\\ \hline 100.000\\ \hline 100.000\\ \hline \end{array}$	t = 1 80.769 80.769 79.742 79.742 1.877 1.874 1.874 98.208 98.208 99.235 99.235 178.977 16.532 16.532	$\begin{array}{c} 3\\ t=2\\ 81.413\\ 81.413\\ 79.373\\ 79.373\\ 1.710\\ 1.710\\ 1.710\\ 1.710\\ 97.015\\ 99.056\\ 99.056\\ 178.428\\ 2.843\\ 2.843\\ \end{array}$	- - - - - - - - 96.459 96.459 99.492	$\begin{array}{c} t = 0 \\ \hline 100.000 \\ 100.000 \\ 100.000 \\ \hline - \\ \hline 2.115 \\ 2.110 \\ \hline 2.110 \\ \hline - \\ \hline 100.000 \\ 100.000 \\ \hline - \\ \hline \end{array}$	$t=1\\ 100.787\\ 99.727\\ 99.727\\ -\\ 1.912\\ 1.908\\ 1.908\\ -\\ 98.972\\ 100.031\\ 100.031\\ -\\ 199.759\\ 2444\\ 2123$	101.384 99.294 99.294 - 1.710 1.710 1.710 - 98.643 100.734 100.734 - 200.028 8.066 4.905	- - - - - - - - 99.050 102.142
$\begin{array}{c} u_1^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_2^{\rm OLN}(t) \\ u_3^{\rm OLN}(t) \\ u_3^{\rm OLN}(t) \\ v_4^{\rm OLN}(t) \\ y_2^{\rm OLN}(t) \\ y_3^{\rm OLN}(t) \\ y_3^{\rm OLN}(t) \\ v_4^{\rm OLN}(t) \\ c_2^{\rm OLN}(t) \\ c_2^{\rm OLN}(t) \\ c_3^{\rm OLN}(t) \\ c_4^{\rm OLN}(t) \\ \end{array}$	$\begin{array}{c} t=0\\ 80.000\\ 80.000\\ 80.000\\ 80.000\\ \hline 2.047\\ 2.047\\ 2.041\\ \hline 2.041\\ \hline 100.000\\ 100.000\\ \hline 100.000\\ \hline 100.000\\ \hline \end{array}$	t = 1 80.769 80.769 79.742 79.742 1.877 1.874 1.874 98.208 98.208 99.235 99.235 178.977 16532	$\begin{array}{c} 3\\ t=2\\ 81.413\\ 81.413\\ 79.373\\ 79.373\\ 1.710\\ 1.710\\ 1.710\\ 1.710\\ 97.015\\ 99.056\\ 99.056\\ 178.428\\ 2.843\\ 2.843\\ 1.668\\ \end{array}$	- - - - - - - - 96.459 96.459 99.492	$\begin{array}{c} t = 0 \\ \hline 100.000 \\ 100.000 \\ 100.000 \\ \hline - \\ \hline 2.115 \\ 2.110 \\ \hline 2.110 \\ \hline - \\ \hline 100.000 \\ 100.000 \\ \hline - \\ \hline \end{array}$	$\begin{array}{c} t=1\\ 100.787\\ 99.727\\ 99.727\\ -\\ 1.912\\ 1.908\\ 1.908\\ -\\ 98.972\\ 100.031\\ 100.031\\ -\\ 199.759\\ 2444\\ \end{array}$	101.384 99.294 99.294 - 1.710 1.710 1.710 - 98.643 100.734 100.734 - 200.028 8.066 4.905	- - - - - - - - 99.050 102.142

В табл. 1 приведены значения текущих равновесных объемов производства $u_i^{\text{OLN}}(t) = u_{i1}^{\text{OLN}}(t,c_0)$, инвестиций $y_i^{\text{OLN}}(t) = u_{i2}^{\text{OLN}}(t,c_0)$ и издержек $c_i^{\text{OLN}}(t)$ для каждой фирмы $i \in N$ при равновесии по Нэшу в программных стратегиях $\mathbf{u}^{\text{OLN}}(t,c_0)$. В ней также представлены равновесные прибыли $J_i^{\text{OLN}} := J_i(c_0,u^{\text{OLN}},y^{\text{OLN}}) = J_i(\mathbf{u}^{\text{OLN}})$ и текущие цены, формируемые в соответствии с линейной обратной функцией спроса: в равновесии по Нэшу такие цены равны $P^{\text{OLN}}(t) := p - \sum_{j \in N} u_j^{\text{OLN}}(t)$,

 $t \in \mathcal{T} \setminus \{T\}$. Все представленные величины округлены до третьего знака после запятой. Более подробный анализ равновесия в программных стратегиях будет рассмотрен в п. 4.

3.2. Равновесие по Нэшу в позиционных стратегиях. Для определения равновесия по Нэшу в позиционных стратегиях воспользуемся уравнением Гамильтона — Якоби — Беллмана [18]. Равновесие можно найти, используя следующую теорему.

Теорема 2. Набор стратегий $u^{FBN} = (u_1^{FBN}, \dots, u_n^{FBN})$, компоненты которого $u_i^{FBN}(t,c) = (u_{i1}^{FBN}(t,c), u_{i2}^{FBN}(t,c)) = (a_{i1}(t)'c + b_{i1}(t), a_{i2}(t)'c + b_{i2}(t)), i \in N, t \in \mathcal{T} \setminus \{T\},$ $u c = (c_1, \dots, c_n)'$ — некоторый набор издержек, является единственным равновесием по Нэшу в позиционных стратегиях тогда и только тогда, когда существует единственное решение системы рекуррентных соотношений

$$a_{i1}(t) = \frac{\mathbf{1} - (n+1)e_i}{n+1}, \quad a_{i2}(t) = -\frac{1}{\rho^t \varepsilon_i(t)} \left[\delta I - \sum_{j \in N} \mu_j(t) a_{j2}(t)' \right]' K_i(t+1)\mu_i(t), \quad (10)$$

$$b_{i1}(t) = \frac{p}{n+1}, \quad b_{i2}(t) = -\frac{1}{\rho^t \varepsilon_i(t)} \left[k_i(t+1) - K_i(t+1) \sum_{j \in \mathcal{N}} \mu_j(t) b_{j2}(t) \right]' \mu_i(t), \tag{11}$$

$$K_i(t) = 2\rho^t a_{i1}(t)a_{i1}(t)' - \rho^t \varepsilon_i(t)a_{i2}(t)a_{i2}(t)' +$$

$$+ \left(\delta I - \sum_{j=1}^{n} \mu_j(t) a_{j2}(t)'\right)' K_i(t+1) \left(\delta I - \sum_{j=1}^{n} \mu_j(t) a_{j2}(t)'\right), \tag{12}$$

$$k_i(t) = 2\rho^t a_{i1}(t)b_{i1}(t) - \rho^t \varepsilon_i(t)a_{i2}(t)b_{i2}(t) +$$

$$+ \left(\delta I - \sum_{j=1}^{n} \mu_j(t) a_{j2}(t)'\right)' \left[k_i(t+1) - K_i(t+1) \sum_{j \in N} \mu_j(t) b_{j2}(t)\right], \tag{13}$$

$$\kappa_i(t) = \rho^t \left(b_{i1}^2(t) - \frac{\varepsilon_i(t)}{2} b_{i2}^2(t) \right) + \kappa_i(t+1) -$$

$$-\left[k_i(t+1) - \frac{1}{2}K_i(t+1)\sum_{j\in N}\mu_j(t)b_{j2}(t)\right]'\sum_{j\in N}\mu_j(t)b_{j2}(t)$$
(14)

с граничными условиями $K_i(T) = 0$, $k_i(T) = -\rho^T \eta e_i$, $\kappa_i(T) = \rho^T \eta_i$ для $i \in N$, и при этом разность $\rho^t \varepsilon_i(t) - \mu_i(t)' K_i(t+1) \mu_i(t)$ положительна для $i \in N$ и $t \in \mathcal{T} \setminus \{T\}$. Кроме того, $J_i(\mathbf{u}^{\mathrm{FBN}}) = \frac{1}{2} c_0' K_i(0) c_0 + k_i(0)' c_0 + \kappa_i(0)$ для $i \in N$.

Доказательство. Из теории динамических игр [18–20] следует, что $\mathbf{u}^{\mathrm{FBN}}$ является равновесием по Нэшу тогда и только тогда, когда существуют функции $V_i(t,\cdot):\mathbb{R}^n\mapsto\mathbb{R},\ t\in\mathcal{T},\ i\in N,$ удовлетворяющие уравнению Гамильтона — Якоби — Беллмана:

$$V_{i}(t,c) = \max_{(u_{i}(t),y_{i}(t))\in U_{i}\times Y_{i}} \left[\rho^{t} \left(p - c_{i} - u_{i}(t) - \sum_{j\neq i} \mathbf{u}_{j1}^{\mathrm{FBN}}(t,c) \right) u_{i}(t) - \rho^{t} \frac{\varepsilon_{i}(t)}{2} y_{i}^{2}(t) + V_{i} \left(t + 1, \delta c - \mu_{i}(t) y_{i}(t) - \sum_{j\neq i} \mu_{j}(t) \mathbf{u}_{j2}^{\mathrm{FBN}}(t,c) \right) \right].$$

$$(15)$$

В классе линейно-квадратичных игр такие функции можно найти в специальном виде $V_i(t,c) = \frac{1}{2}c'K_i(t)c + k_i(t)'c + \kappa_i(t)$ с граничным условием $V_i(T,c) = \rho^T(\eta_i - \eta c_i)$. Предполагая линейный вид равновесных стратегий, т. е. $\mathbf{u}_{i1}^{\mathrm{FBN}}(t,c) = a_{i1}(t)'c + b_{i1}(t)$ и $\mathbf{u}_{i2}^{\mathrm{FBN}}(t,c) = a_{i2}(t)'c + b_{i2}(t)$ и решая задачу максимизации в (15), находим, что

$$\mathbf{u}_{i1}^{\mathrm{FBN}}(t,c) = \frac{p - c_i - \sum_{j \neq i} \mathbf{u}_{j1}^{\mathrm{FBN}}(t,c)}{2},$$

$$\mathbf{u}_{i2}^{\mathrm{FBN}}(t,c) = -\frac{1}{\rho^t \varepsilon_i(t)} \left[\left(\delta c - \sum_{j \in N} \mu_j(t) \mathbf{u}_{j2}^{\mathrm{FBN}}(t,c) \right)' K_i(t) + k_i(t)' \right] \mu_i(t),$$

или

$$a_{i1}(t)'c + b_{i1}(t) = \frac{p - c_i - \sum_{j \neq i} (a_{j1}(t)'c + b_{j1}(t))}{2},$$

$$a_{i2}(t)'c + b_{i2}(t) = -\frac{1}{\rho^t \varepsilon_i(t)} \left[\left(\delta c - \sum_{j \in N} \mu_j(t) (a_{j2}(t)'c + b_{j2}(t)) \right)' K_i(t) + k_i(t)' \right] \mu_i(t).$$

Для каждой фирмы и каждого неокончательного момента времени уравнение (15) допускает следующую запись:

$$\begin{split} V_i(t,c) &= \max_{(u_i(t),y_i(t)) \in U_i \times Y_i} \left[\begin{pmatrix} \rho^t p \\ 0 \end{pmatrix}' \begin{pmatrix} u_i(t) \\ y_i(t) \end{pmatrix} - c' \begin{pmatrix} \rho^t e_i & 0 \end{pmatrix} \begin{pmatrix} u_i(t) \\ y_i(t) \end{pmatrix} - \\ &- \frac{1}{2} \begin{pmatrix} u_i(t) \\ y_i(t) \end{pmatrix}' \begin{pmatrix} 2\rho^t & 0 \\ 0 & \rho^t \varepsilon_i(t) \end{pmatrix} \begin{pmatrix} u_i(t) \\ y_i(t) \end{pmatrix} - \sum_{j \neq i} \mathbf{u}_j^{\mathrm{FBN}}(t,c)' \begin{pmatrix} \rho^t & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_i(t) \\ y_i(t) \end{pmatrix} + \\ &+ V_i \begin{pmatrix} t+1, \ \delta c - \begin{pmatrix} 0 & \mu_i(t) \end{pmatrix} \begin{pmatrix} u_i(t) \\ y_i(t) \end{pmatrix} - \sum_{j \neq i} \begin{pmatrix} 0 & \mu_j(t) \end{pmatrix} \mathbf{u}_j^{\mathrm{FBN}}(t,c) \end{pmatrix} \right]. \end{split}$$

Используя линейное представление стратегий фирм и квадратичный вид функции V_i , выпишем матрицу квадратичной формы для выражения, заключенного в квадратные скобки:

$$\begin{pmatrix} -\rho^t & 0 \\ 0 & \frac{1}{2} \left(\mu_i(t)' K_i(t+1) \mu_i(t) - \rho^t \varepsilon_i(t) \right) \end{pmatrix}.$$

Ввиду условий теоремы данная матрица отрицательно определена, что обеспечивает единственность решения соответствующей задачи максимизации. Используя метод неопределенных коэффициентов для всех $i \in N$ и $t \in \mathcal{T} \setminus \{T\}$, получаем систему (10), (11), единственное решение которой относительно $a_{i1}(t), b_{i1}(t), a_{i2}(t)$ и $b_{i2}(t)$ обеспечивает единственность равновесия по Нэшу [18]. Далее, поскольку $F_i = \left(\mathbf{u}_{i1}^{\mathrm{FBN}}(t,c)\right)^2 - \frac{\varepsilon_i(t)}{2} \left(\mathbf{u}_{i2}^{\mathrm{FBN}}(t,c)\right)^2$, уравнение Гамильтона — Якоби — Беллмана (15) с учетом вида функции $V_i(t,c)$ и равновесного поведения перепишем так:

$$V_{i}(t,c) = \rho^{t} \left[\left(\mathbf{u}_{i1}^{\text{FBN}}(t,c) \right)^{2} - \frac{\varepsilon_{i}(t)}{2} \left(\mathbf{u}_{i2}^{\text{FBN}}(t,c) \right)^{2} \right] + V_{i} \left(t + 1, \delta c - \sum_{i \in N} \mu_{j}(t) \mathbf{u}_{j2}^{\text{FBN}}(t,c) \right),$$

или

$$\frac{1}{2}c'K_{i}(t)c + k_{i}(t)'c + \kappa_{i}(t) = \rho^{t} \left[\left(a_{i1}(t)'c + b_{i1}(t) \right)^{2} - \frac{\varepsilon_{i}(t)}{2} \left(a_{i2}(t)'c + b_{i2}(t) \right)^{2} \right] + \\
+ \left[\frac{1}{2} \left(\delta c - \sum_{j \in N} \mu_{j}(t) \left(a_{j2}(t)'c + b_{j2}(t) \right) \right)' K_{i}(t+1) + k_{i}(t+1)' \right] \times \\
\times \left(\delta c - \sum_{i \in N} \mu_{j}(t) \left(a_{j2}(t)'c + b_{j2}(t) \right) \right) + \kappa_{i}(t+1).$$

Определив неизвестные коэффициенты в квадратичной и линейной частях, а также в слагаемом, независящим от c, приходим к соотношениям (12)–(14). Поскольку

 $V_i(t,c)$ представляет собой прибыль фирмы $i \in N$ в равновесии по Нэшу в игре, начинающейся в момент времени t при наборе издержек c, то $J_i(\mathbf{u}^{\mathrm{FBN}}) = V_i(0,c_0)$ для $i \in N$. Теорема доказана.

Замечание. В равновесии по Нэшу объемы производства $\mathbf{u}_{i1}^{\mathrm{FBN}}(t,c)$ зависят только от набора издержек фирм и не зависят от момента времени, в то время как объемы инвестиций $\mathbf{u}_{i2}^{\mathrm{FBN}}(t,c)$ определяются и набором издержек фирм, и моментом времени. Кроме того, объемы производства $\mathbf{u}_{i1}^{\mathrm{FBN}}(t,c)$ и $\mathbf{u}_{i1}^{\mathrm{OLN}}(t,c_0)$ имеют одинаковый функциональный вид.

 $\it Taблица~2.$ Равновесие по Нэшу $\it u^{FBN}$ для четырех видов сетевых структур и соответствующие прибыли

Величина	Сеть g_1 l d d d				Сеть g_2 4			
	t = 0	t = 1	t=2	t=3	t = 0	t = 1	t=2	t=3
$u_{1,\mathrm{DN}}^{\mathrm{FBN}}(t)$	80.000	81.808	83.471	_	80.000	81.202	82.263	-
$u_{2,\mathrm{DN}}^{\mathrm{FBN}}(t)$	80.000	79.765	79.409	_	80.000	80.178	80.229	-
$u_{3}^{\mathrm{FBN}}(t)$	80.000	79.765	79.409	_	80.000	80.178	80.229	-
$u_4^{\mathrm{FBN}}(t)$	80.000	79.765	79.409	-	80.000	79.179	78.231	_
$y_{1}^{\mathrm{FBN}}(t)$	2.033	1.871	1.710	-	2.061	1.885	1.710	-
$y_2^{\mathrm{FBN}}(t)$	2.084	1.895	1.710	-	2.086	1.897	1.710	-
$y_3^{\text{FBN}}(t)$	2.084	1.895	1.710	-	2.086	1.897	1.710	-
$y_4^{\mathrm{FBN}}(t)$	2.084	1.895	1.710	-	2.110	1.908	1.710	-
$c_1^{\mathrm{FBN}}(t)$	100.000	97.089	94.831	93.261	100.000	98.061	96.785	96.207
$c_2^{\mathrm{FBN}}(t)$	100.000	99.132	98.893	99.380	100.000	99.085	98.819	99.238
$c_3^{\mathrm{FBN}}(t)$	100.000	99.132	98.893	99.380	100.000	99.085	98.819	99.238
$c_4^{\mathrm{FBN}}(t)$	100.000	99.132	98.893	99.380	100.000	100.084	100.817	102.231
$P^{\mathrm{FBN}}(t)$	180.000	178.897	178.302	-	180.000	179.263	179.048	-
$J_1^{ m FBN}$		19 774	1.075			1689	0.994	
$J_2^{ m FBN}$		13523	3.290			1376	4.255	
$J_3^{ m FBN}$		13523	3.290			1376	4.255	
$J_4^{ m FBN}$		13523	3.290			1069	1.319	
		2)		2			
Величина	Сеть	g_3 l	4		Сеть g_4 l			
	t = 0		t=2	4 _ 9	t=0 $t=1$ $t=2$ $t=3$			
EDN	$\iota = 0$	t = 1		t = 3			t = 2 101.374	t = 3
	90,000	90.799	01 49 4		100 000			
$u_1^{\text{FBN}}(t)$	80.000	80.782	81.434	_	100.000	100.780		_
$u_2^{\mathrm{FBN}}(t)$	80.000	80.782	81.434	_ _	100.000	99.745	99.322	_
$\begin{array}{c} u_2^{\text{FBN}}(t) \\ u_3^{\text{FBN}}(t) \end{array}$	80.000 80.000	80.782 79.773	81.434 79.420	_ _ _				- - -
$\begin{bmatrix} u_2^{\mathrm{FBN}}(t) \\ u_3^{\mathrm{FBN}}(t) \\ u_4^{\mathrm{FBN}}(t) \end{bmatrix}$	80.000 80.000 80.000	80.782 79.773 79.773	81.434 79.420 79.420	- - - -	100.000 100.000 -	99.745 99.745 –	99.322 99.322 –	- - - -
$\begin{array}{c} u_2^{\text{FBN}}(t) \\ u_3^{\text{FBN}}(t) \\ u_4^{\text{FBN}}(t) \\ \hline y_1^{\text{FBN}}(t) \end{array}$	80.000 80.000 80.000 2.059	80.782 79.773 79.773 1.884	81.434 79.420 79.420 1.710	- - - -	100.000 100.000 - 2.096	99.745 99.745 - 1.902	99.322 99.322 - 1.710	- - - -
$\begin{array}{c} u_2^{\mathrm{FBN}}(t) \\ u_3^{\mathrm{FBN}}(t) \\ u_4^{\mathrm{FBN}}(t) \\ \hline y_1^{\mathrm{FBN}}(t) \\ y_2^{\mathrm{FBN}}(t) \end{array}$	80.000 80.000 80.000 2.059 2.059	80.782 79.773 79.773 1.884 1.884	81.434 79.420 79.420 1.710 1.710	- - - - -	100.000 100.000 - 2.096 2.139	99.745 99.745 - 1.902 1.922	99.322 99.322 - 1.710 1.710	- - - - -
$\begin{array}{c} u_2^{\mathrm{FBN}}(t) \\ u_3^{\mathrm{FBN}}(t) \\ u_4^{\mathrm{FBN}}(t) \\ \hline y_1^{\mathrm{FBN}}(t) \\ y_2^{\mathrm{FBN}}(t) \end{array}$	80.000 80.000 80.000 2.059 2.059 2.084	80.782 79.773 79.773 1.884 1.884 1.895	81.434 79.420 79.420 1.710 1.710 1.710	- - - - -	100.000 100.000 - 2.096	99.745 99.745 - 1.902	99.322 99.322 - 1.710	- - - - -
$\begin{array}{c} u_{2}^{\mathrm{FBN}}(t) \\ u_{3}^{\mathrm{FBN}}(t) \\ u_{4}^{\mathrm{FBN}}(t) \\ \\ y_{1}^{\mathrm{FBN}}(t) \\ y_{2}^{\mathrm{FBN}}(t) \\ y_{3}^{\mathrm{FBN}}(t) \\ y_{4}^{\mathrm{FBN}}(t) \\ y_{4}^{\mathrm{FBN}}(t) \end{array}$	80.000 80.000 80.000 2.059 2.059 2.084 2.084	80.782 79.773 79.773 1.884 1.884 1.895 1.895	81.434 79.420 79.420 1.710 1.710 1.710 1.710	- - - - - - - -	100.000 100.000 - 2.096 2.139 2.139	99.745 99.745 - 1.902 1.922 1.922	99.322 99.322 - 1.710 1.710 1.710	- - - - - - - -
$\begin{array}{c} u_{2}^{\mathrm{FBN}}(t) \\ u_{3}^{\mathrm{FBN}}(t) \\ u_{4}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} v_{1}^{\mathrm{FBN}}(t) \\ y_{1}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} y_{1}^{\mathrm{FBN}}(t) \\ y_{2}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} y_{3}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} v_{4}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} c_{1}^{\mathrm{FBN}}(t) \end{array}$	80.000 80.000 80.000 2.059 2.059 2.084 2.084 100.000	80.782 79.773 79.773 1.884 1.884 1.895 1.895	81.434 79.420 79.420 1.710 1.710 1.710 1.710 96.859	- - - - - - - - - - - - - - - - - - -	100.000 100.000 - 2.096 2.139 2.139 - 100.000	99.745 99.745 - 1.902 1.922 1.922 - 98.949	99.322 99.322 - 1.710 1.710 1.710 - 98.608	99.012
$\begin{array}{c} u_{2}^{\mathrm{FBN}}(t) \\ u_{3}^{\mathrm{FBN}}(t) \\ u_{4}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} u_{4}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} y_{1}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} y_{2}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} y_{3}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} y_{4}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} c_{1}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} c_{2}^{\mathrm{FBN}}(t) \\ \end{array} \\ \end{array}$	80.000 80.000 80.000 2.059 2.059 2.084 2.084 100.000 100.000	80.782 79.773 79.773 1.884 1.884 1.895 1.895 98.108	81.434 79.420 79.420 1.710 1.710 1.710 1.710 96.859 96.859	96.286	100.000 100.000 - 2.096 2.139 2.139 - 100.000 100.000	99.745 99.745 - 1.902 1.922 1.922 - 98.949 99.985	99.322 99.322 - 1.710 1.710 1.710 - 98.608 100.661	102.064
$\begin{array}{c} u_{2}^{\mathrm{FBN}}(t) \\ u_{3}^{\mathrm{FBN}}(t) \\ u_{4}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} y_{1}^{\mathrm{FBN}}(t) \\ y_{2}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} y_{2}^{\mathrm{FBN}}(t) \\ y_{3}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} y_{4}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} z_{1}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} z_{2}^{\mathrm{FBN}}(t) \\ \end{array} \\ \begin{array}{c} z_{2}^{\mathrm{FBN}}(t) \\ \end{array} \\ \end{array}$	80.000 80.000 80.000 2.059 2.059 2.084 2.084 100.000 100.000	80.782 79.773 79.773 1.884 1.884 1.895 1.895 98.108 99.118	81.434 79.420 79.420 1.710 1.710 1.710 1.710 96.859 96.859 98.872	96.286 99.295	100.000 100.000 - 2.096 2.139 2.139 - 100.000	99.745 99.745 - 1.902 1.922 1.922 - 98.949	99.322 99.322 - 1.710 1.710 1.710 - 98.608	
upBN(t)	80.000 80.000 80.000 2.059 2.059 2.084 2.084 100.000 100.000 100.000	80.782 79.773 79.773 1.884 1.884 1.895 1.895 98.108 99.118 99.118	81.434 79.420 79.420 1.710 1.710 1.710 1.710 96.859 96.859 98.872 98.872	96.286	100.000 100.000 - 2.096 2.139 2.139 - 100.000 100.000 100.000	99.745 99.745 - 1.902 1.922 1.922 - 98.949 99.985 99.985	99.322 99.322 - 1.710 1.710 1.710 - 98.608 100.661 100.661	102.064
u ^{FBN} ₂ (t) u ^{FBN} ₃ (t) u ^{FBN} ₄ (t) u ^{FB}	80.000 80.000 80.000 2.059 2.059 2.084 2.084 100.000 100.000	80.782 79.773 79.773 1.884 1.884 1.895 1.895 98.108 99.118 99.118 178.890	81.434 79.420 79.420 1.710 1.710 1.710 1.710 96.859 96.859 98.872 98.872 178.292	96.286 99.295	100.000 100.000 - 2.096 2.139 2.139 - 100.000 100.000	99.745 99.745 - 1.902 1.922 1.922 - 98.949 99.985 99.985 - 199.730	99.322 99.322 - 1.710 1.710 1.710 - 98.608 100.661 100.661 - 199.982	102.064
$\begin{array}{c} u_2^{\rm FBN}(t) \\ u_3^{\rm FBN}(t) \\ u_3^{\rm FBN}(t) \\ u_4^{\rm FBN}(t) \\ y_1^{\rm FBN}(t) \\ y_2^{\rm FBN}(t) \\ y_3^{\rm FBN}(t) \\ y_4^{\rm FBN}(t) \\ c_2^{\rm FBN}(t) \\ c_3^{\rm FBN}(t) \\ c_4^{\rm FBN}(t) \\ c_4^{\rm FBN}(t) \\ c_4^{\rm FBN}(t) \\ c_4^{\rm FBN}(t) \\ \end{array}$	80.000 80.000 80.000 2.059 2.059 2.084 2.084 100.000 100.000 100.000	80.782 79.773 79.773 1.884 1.884 1.895 1.895 98.108 99.118 99.118 178.890	81.434 79.420 79.420 1.710 1.710 1.710 1.710 96.859 96.859 98.872 98.872 178.292	96.286 99.295	100.000 100.000 - 2.096 2.139 2.139 - 100.000 100.000 100.000	99.745 99.745 - 1.902 1.922 1.922 - 98.949 99.985 99.985 - 199.730 24.53	99.322 99.322 - 1.710 1.710 1.710 - 98.608 100.661 100.661 - 199.982 5.499	102.064
$\begin{array}{c} u_2^{\rm FBN}(t) \\ u_3^{\rm FBN}(t) \\ u_3^{\rm FBN}(t) \\ u_4^{\rm FBN}(t) \\ y_1^{\rm FBN}(t) \\ y_2^{\rm FBN}(t) \\ y_3^{\rm FBN}(t) \\ y_4^{\rm FBN}(t) \\ c_2^{\rm FBN}(t) \\ c_3^{\rm FBN}(t) \\ c_4^{\rm FBN}(t) \\ c_5^{\rm FBN}(t) \\ c_5^{\rm FBN}(t) \\ c_5^{\rm FBN}(t) \\ c_7^{\rm FBN}(t) \\$	80.000 80.000 80.000 2.059 2.059 2.084 2.084 100.000 100.000 100.000	80.782 79.773 79.773 1.884 1.884 1.895 1.895 98.108 99.118 99.118 178.890 16.645 16.645	81.434 79.420 79.420 1.710 1.710 1.710 1.710 96.859 96.859 98.872 98.872 178.292 3.707	96.286 99.295	100.000 100.000 - 2.096 2.139 2.139 - 100.000 100.000 100.000	99.745 99.745 - 1.902 1.922 1.922 - 98.949 99.985 99.985 - 199.730 24.53 21.22	99.322 99.322 - 1.710 1.710 1.710 - 98.608 100.661 100.661 - 199.982 5.499 3.474	102.064
$\begin{array}{c} u_2^{\rm FBN}(t) \\ u_3^{\rm FBN}(t) \\ u_3^{\rm FBN}(t) \\ u_4^{\rm FBN}(t) \\ y_1^{\rm FBN}(t) \\ y_2^{\rm FBN}(t) \\ y_3^{\rm FBN}(t) \\ y_4^{\rm FBN}(t) \\ c_2^{\rm FBN}(t) \\ c_3^{\rm FBN}(t) \\ c_4^{\rm FBN}(t) \\ c_4^{\rm FBN}(t) \\ c_4^{\rm FBN}(t) \\ c_4^{\rm FBN}(t) \\ \end{array}$	80.000 80.000 80.000 2.059 2.059 2.084 2.084 100.000 100.000 100.000	80.782 79.773 79.773 1.884 1.884 1.895 1.895 98.108 99.118 99.118 178.890	81.434 79.420 79.420 1.710 1.710 1.710 1.710 96.859 96.859 98.872 98.872 178.292 3.707 5.573	96.286 99.295	100.000 100.000 - 2.096 2.139 2.139 - 100.000 100.000 100.000	99.745 99.745 - 1.902 1.922 1.922 - 98.949 99.985 99.985 - 199.730 24.53	99.322 99.322 - 1.710 1.710 1.710 - 98.608 100.661 100.661 - 199.982 5.499 3.474	102.064

Пример 2. Проиллюстрируем результаты теоремы 2 на трехпериодной модели конкурентного производства с инвестированием из примера 1. В табл. 2 приведены

значения текущих равновесных объемов производства $u_i^{\text{FBN}}(t) = u_{i1}^{\text{FBN}}(t, c^{\text{FBN}}(t))$, инвестиций $y_i^{\text{FBN}}(t) = u_{i2}^{\text{FBN}}(t, c^{\text{FBN}}(t))$, издержек $c_i^{\text{FBN}}(t)$ для каждой фирмы при равновесии по Нэшу в позиционных стратегиях $u^{\text{FBN}}(t,c)$, а также равновесных прибылей $J_i^{\text{FBN}} := J_i(c_0, u^{\text{FBN}}, y^{\text{FBN}}) = J_i(u^{\text{FBN}})$ и текущих цен $P^{\text{FBN}}(t) := p - \sum_{j \in N} u_j^{\text{FBN}}(t)$, $t \in \mathcal{T} \setminus \{T\}$. Более подробный анализ равновесия в позиционных стратегиях будет представлен в п. 4, однако беглый анализ результатов показывает, что для всех рассматриваемых сетевых структур использование такого типа стратегий, т. е. когда фирмы адаптируются к текущим издержкам конкурентов, а не только к начальным, позволяет всем фирмам уменьшить свои издержки в равновесии. В то же время количество фирм-конкурентов на рынке может играть ключевую роль. Когда на рынке присутствуют четыре фирмы, равновесие по Нэшу в позиционных стратегиях приносит фирмам лучшую прибыль по сравнению с их прибылью в равновесии в программных стратегиях. Кроме того, при использовании позиционных стратегий фирмы в равновесии производят больше продукции в каждый момент времени. Когда на рынке три фирмы, это уже не имеет места.

- 4. Влияние параметров сетевого взаимодействия на равновесие по Нэ**шу.** Сеть q назовем q-регулярной, если для любых $i, j \in N, i \neq j$, выполняется равенство $|N_i(q)| = |N_i(q)| = q$. Единственным аспектом, в котором происходило нарушение симметричности между фирмами в каждом из рассмотренных ранее примеров игры, была сеть. Как следствие, именно сеть предопределяла динамику конкурентоспособности фирм в процессе реализации выбранного равновесия по Нэшу. В равновесии по Нэшу при изучении динамической игры на q-регулярной сети ни у одной фирмы не наблюдается конкурентное преимущество перед какой-либо другой фирмой (в части равновесных объемов производства, инвестиций, издержек и затрат), что обусловлено одинаковыми исходными характеристиками фирм. При анализе поведения фирм в примерах 1 и 2 были использованы стандартные для теории графов структуры: линейная (сети q_3 и q_4) и звезда (сети q_1 и q_4), а также отдельно выделен случай несвязной структуры с «изолированной» фирмой (сеть g_2). Далее отдельно будут рассмотрены три варианта изменения сети. Анализируя переход от g_1 к g_2 , можно понять значимость одной связи в звезде, от g_3 к g_2 — значимость одной связи в линейной сети, когда исключение связи приводит к «изолированной» фирме, сохраняя при этом связность остальных, и, наконец, анализ перехода от q_2 к q_4 позволит выявить эффект количества фирм на рынке при линейной сети. Входными параметрами для всех модельных ситуаций служат данные из табл. 1 и 2.
- **4.1.** Влияние сети на прибыль фирмы. Отметим эффекты добавления новых связей в сети или удаления существующих на прибыль фирмы в равновесии по Нэшу. Понимание подобных эффектов позволит фирме, ориентируясь на свою прибыль, оценить необходимость пересмотра текущей структуры взаимоотношений со своими конкурентами.

Наблюдение 1. Из двух фирм бо́льшую прибыль имеет та, у которой больше прямых соседей (при прочих равных).

Это вывод основан на непосредственном сравнении прибылей, значения которых представлены в табл. 1 и 2.

Наблюдение 2. На прибыль любой фирмы влияют все связи в сети, даже те, в которые фирма не вовлечена непосредственно. Значительное изменение прибылей наблюдается у тех фирм, которые непосредственно участвуют в создании или удалении связи.

Это можно заметить из данных, представленных в табл. 3. В ней $\Delta J_i^{
m OLN}$ и $\Delta J_i^{
m FBN}$

показывают относительное изменение общей прибыли фирмы i, выраженное в процентах, при изменении сети, когда фирмы придерживаются равновесий в программных и позиционных стратегиях соответственно. Например, при переходе от сети g_2 к сети g_3 фирмы 2 и 4 (которые создают связь между собой) получают заметный прирост прибыли, а у фирм 1 и 3 прибыль незначительно уменьшается.

Таблица 3. Чувствительность равновесных прибылей к изменению сети (относительное изменение, %)

Изменение	$\Delta J_1^{ m OLN}$	$\Delta J_2^{ m OLN}$	$\Delta J_3^{ m OLN}$	$\Delta J_4^{ m OLN}$	$\Delta J_1^{ m FBN}$	$\Delta J_2^{ m FBN}$	$\Delta J_3^{ m FBN}$	$\Delta J_4^{ m FBN}$
$g_1 \rightarrow g_2$	-14.640	1.285	1.285	-21.261	-14.580	1.782	1.782	-20.941
$g_2 \rightarrow g_1$	17.150	-1.268	-1.268	27.002	17.069	-1.751	-1.751	26.489
$g_2 \rightarrow g_3$	-1.070	20.944	-1.304	26.956	-1.464	20.920	-1.589	26.697
$g_3 \rightarrow g_2$	1.082	-17.317	1.321	-21.233	1.486	-17.301	1.614	-21.072
$g_2 o g_4$	46.293	55.341	55.341	_	45.258	54.193	54.193	_
$g_4 o g_2$	-31.644	-35.626	-35.626	_	-31.157	-35.146	-35.146	_

Наблюдение 3. Увеличение прибыли в равновесии после удаления связи больше у тех фирм, соседями которых не являлась ни одна фирма, утратившая связь.

Например, при переходе от сети g_3 к g_2 положительный эффект у фирмы 3 выше, чем у фирмы 1.

Наблюдение 4. Каждой фирме выгодно стремиться к уменьшению количества своих конкурентов на рынке, а следовательно, к монополии.

Наибольший эффект в приросте прибыли выявляется при переходе от сети g_2 к g_4 , что можно также трактовать как уход фирмы 4 с рынка. И в обратную сторону: при появлении на рынке нового участника прибыль существующих фирм заметно снизится, и его вход может быть заблокирован.

4.2. Влияние сети на текущие цены. По аналогии с п. 4.1 здесь отметим эффекты добавления новых связей в сети или удаления существующих на текущую цену единицы продукции на рынке, когда фирмы придерживаются равновесия по Нэшу. Понимание подобных эффектов позволит сделать вывод о влиянии структуры взаимоотношения фирм на конечную цену продукции для потребителя. Используя данные табл. 1 и 2, вычислим относительные изменения текущих цен, выраженные в процентах, при изменении сети, когда фирмы придерживаются равновесного поведения. Соответствующие значения обозначим через $\Delta P^{\rm OLN}(t)$ и $\Delta P^{\rm FBN}(t)$ и приведем в табл. 4.

Tаблица~4. Чувствительность текущих равновесных цен к изменению сети (относительное изменение, %)

Изменение	$\Delta P^{\mathrm{OLN}}(0)$	$\Delta P^{\mathrm{OLN}}(1)$	$\Delta P^{\mathrm{OLN}}(2)$	$\Delta P^{\mathrm{FBN}}(0)$	$\Delta P^{\mathrm{FBN}}(1)$	$\Delta P^{\mathrm{FBN}}(2)$
$g_1 \rightarrow g_2$	0.000	0.230	0.457	0.000	0.205	0.418
$g_2 o g_1$	0.000	-0.229	-0.455	0.000	-0.204	-0.417
$g_2 o g_3$	0.000	-0.228	-0.454	0.000	-0.208	-0.422
$g_3 o g_2$	0.000	0.229	0.456	0.000	0.208	0.424
$g_2 o g_4$	11.111	11.356	11.596	11.111	11.417	11.692
$g_4 o g_2$	-10.000	-10.198	-10.391	-10.000	-10.247	-10.468

Наблюдение 5. При сохранении количества участников на рынке сетевая структура не оказывает сколь-либо значимого влияния на текущие цены. Если же число участников на рынке уменьшается (увеличивается), то это приводит к заметному росту (снижению) текущей цены на продукцию.

Данное утверждение легко объяснить, опираясь на данные табл. 4: в случае присутствия четырех фирм изменение текущих цен в равновесии не превышает $0.5\,\%$ при изменении конфигурации сети; переход же от сети q_2 к q_4 , т. е. уход фирмы 4 с рынка, позволяет оставшимся фирмам повысить текущие цены на продукцию как минимум на 11%. Также отметим, что с уменьшением (увеличением) количества фирм общий объем производимого товара на рынке в равновесии по Нэшу снижается (возрастает), что следует из вида обратной функции спроса.

4.3. Влияние cemu на поведение фирмы. На основании представленных результатов моделирования приведем наблюдение, которое можно считать центральным различием в инвестиционном поведении фирм при реализации равновесия по Нэшу в двух классах стратегий.

Наблюдение 6. В равновесии по Нэшу, если фирма i в сети имеет больше связей, чем фирма j ($c_{i0} = c_{i0}$), то в условиях равновесия в:

- программных стратегиях $u_i^{\rm OLN}(t)\geqslant u_j^{\rm OLN}(t),\;y_i^{\rm OLN}(t)\geqslant y_i^{\rm OLN}(t),$ что позволяет фирме i производить и инвестировать не меньше фирмы j;
 • позиционных стратегиях $u_i^{\mathrm{FBN}}(t)\geqslant u_j^{\mathrm{FBN}}(t),$ но $y_i^{\mathrm{FBN}}(t)\leqslant y_j^{\mathrm{FBN}}(t),$ что позво-
- ляет фирме i производить не меньше, а инвестировать не больше фирмы j.

Это наблюдение следует из анализа табл. 1 и 2 и может быть объяснено спецификой реализуемых стратегий — от времени или от времени и текущего состояния издержек.

Утверждение. При одинаковом количестве фирм на рынке независимо от сети и класса стратегий (программные или позиционные) текущий объем производства в равновесии по Нэшу будет выше у той фирмы, которая имеет низкие текущие издержки.

Доказательство. Поскольку в равновесии по Нэшу для любых $i \in N$ и $t \in$ $\mathcal{T}\setminus\{T\}$ $u_i^N(t)=rac{p-(n+1)c_i^N(t)+\sum_{j\in N}c_j^N(t)}{n+1}$ (см. доказательство теорем 1 и 2), то из неравенства $c_i^N(t)< c_j^N(t)$, где $j\neq i$, следует, что $u_i^N(t)-u_j^N(t)=c_j^N(t)-c_i^N(t)>0$, а $u_i^N(t)>u_j^N(t)$. Здесь верхний индекс N обозначает производственное поведение и издержки в равновесии по Нэшу (в классе как программных стратегий, так и в классе позиционных).

4.4. Влияние сети на издержки фирмы. Оценим чувствительность издержек фирмы в равновесии по Нэшу к изменению сети. В табл. 5 приведены относительные изменения равновесных издержек (в %) при переходе от одной сети к другой, которые основаны на данных из примеров 1, 2.

Наблюдение 7. В равновесии по Нэшу в классе позиционных стратегий издержки фирмы менее чувствительны к разрыву связи, в которой она участвует, чем в классе программных стратегий. В равновесии по Нэшу в классе программных стратегий издержки фирмы более чувствительны к разрыву связи, в которой она не участвует, чем в классе позиционных стратегий.

Действительно, достаточно обратить внимание на переходы от одной сети к другой, при которых удалялась одна связь: от g_1 к g_2 и от g_3 к g_2 . Это наблюдение можно сформулировать подобным образом и в обратную сторону, заменив удаление связи на ее добавление.

5. Заключение. В статье предложена и исследована динамическая модель количественной конкуренции, включающая в себя инвестиционное поведение фирм в условиях их сетевого взаимодействия. Сформулированы утверждения, характеризующие равновесие по Нэшу в классах программных и позиционных стратегий, что позволяет фирмам адаптировать свое поведение к информации, которой они располагают в мо-

Таблица 5. Чувствительность текущих равновесных издержек к изменению сети (относительное изменение, %)

Изменение	Фирма <i>i</i>	$\Delta c_i^{\mathrm{OLN}}(1)$	$\Delta c_i^{\mathrm{OLN}}(2)$	$\Delta c_i^{\mathrm{OLN}}(3)$	$\Delta c_i^{\mathrm{FBN}}(1)$	$\Delta c_i^{\mathrm{FBN}}(2)$	$\Delta c_i^{\mathrm{FBN}}(3)$
$g_1 \rightarrow g_2$	1	1.053	2.142	3.245	1.002	2.061	3.159
	2	-0.000	-0.000	-0.000	-0.048	-0.075	-0.080
	3	-0.000	-0.000	-0.000	-0.048	-0.075	-0.080
	4	1.039	2.067	3.061	0.961	1.945	2.934
$g_2 \rightarrow g_1$	1	-1.042	-2.097	-3.143	-0.992	-2.019	-3.062
	2	0.000	0.000	0.000	0.048	0.075	0.080
	3	0.000	0.000	0.000	0.048	0.075	0.080
	4	-1.028	-2.025	-2.970	-0.952	-1.908	-2.850
$g_2 \rightarrow g_3$	1	0.001	0.002	0.002	0.048	0.076	0.082
	2	-1.033	-2.056	-3.049	-0.986	-1.984	-2.975
	3	0.003	0.005	0.005	0.033	0.053	0.057
	4	-1.026	-2.020	-2.966	-0.966	-1.930	-2.873
$g_3 \rightarrow g_2$	1	-0.001	-0.002	-0.002	-0.048	-0.076	-0.082
	2	1.043	2.099	3.145	0.995	2.024	3.067
	3	-0.003	-0.005	-0.005	-0.033	-0.053	-0.057
	4	1.036	2.062	3.056	0.975	1.968	2.958
$g_2 \rightarrow g_4$	1	0.779	1.681	2.695	0.905	1.883	2.916
	2	0.805	1.699	2.669	0.908	1.863	2.847
	3	0.805	1.699	2.669	0.908	1.863	2.847
	4	_	_	_	_	_	_
$g_4 \rightarrow g_2$	1	-0.773	-1.653	-2.624	-0.897	-1.848	-2.833
	2	-0.799	-1.670	-2.600	-0.900	-1.829	-2.768
	3	-0.799	-1.670	-2.600	-0.900	-1.829	-2.768
	4	_		_	-	_	_

менты принятия решений. Показано, что производственное поведение фирм в равновесии по Нэшу имеет одинаковый функциональный вид для двух рассматриваемых классов стратегий. Несмотря на то, что теоретическое обоснование проведено для экзогенного задания сетей, допускается их различие в разные моменты времени: проанализирована чувствительность равновесия по Нэшу в предположении неизменности сети на всем протяжении игры и при одинаковых модельных параметрах у всех фирм, чтобы выделить именно эффекты, возникающие от структуры связей. Будучи частным случаем, анализ соответствующих равновесий тем не менее позволил сделать ряд интересных наблюдений. Мы здесь не будем их все приводить, а лишь остановимся на наиболее показательных. Во-первых, обнаружено, что при постоянном количестве фирм на рынке сеть не оказывает значимого влияния на равновесные цены для потребителя, однако с уменьшением количества фирм наблюдается рост равновесной цены. Во-вторых, уменьшение количества фирм на рынке довольно выгодно оставшимся фирмам, поскольку это приводит к ощутимому увеличению их равновесных прибылей (как показывают наблюдения, как минимум на 45%). Наконец, анализ прибылей фирм в равновесии по Нэшу демонстрирует преимущество (хоть и не столь существенное) позиционных стратегий перед программными практически для всех результатов моделирования, что может объясняться реакцией фирм на текущие издержки, а не только на начальные. Конечно, интересным и пока открытым остается анализ равновесного поведения фирм в рамках рассмотренной модели при эндогенном формировании сети. Такое исследование будет проведено в дальнейшем.

Литература

1. Jackson M. O. Social and economic networks. Princeton: Princeton University Press, 2008. 520 p.

- 2. Galeotti A., Goyal S., Jackson M. O., Vega-Redondo F., Yariv L. Network games // Review of Economic Studies. 2010. Vol. 77. P. 218–244.
- 3. Jackson M. O., Zenou Y. Games on networks // Handbook of game theory with economic applications / eds P. Young, S. Zamir. Amsterdam: Elsevier Science, 2015. Vol. 4. P. 95–164.
- 4. *Новиков Д. А.* Игры и сети // Математическая теория игр и ее приложения. 2010. Т. 2. № 1. С. 107–124.
- 5. Goyal S., Moraga-Gonzailez J. L. R&D networks // The RAND Journal of Economics. 2001. Vol. 32. N 4. P. 686–707.
- 6. Zhao J., Ni J. A dynamic analysis of corporate investments and emission tax policy in an oligopoly market with network externality // Operations Research Letters. 2020. Vol. 49. P. 81–83.
- 7. Cellini R., Lambertini L. Dynamic R&D with spillovers: Competition vs cooperation // Journal of Economic Dynamics & Control. 2009. Vol. 33. P. 568–582.
- 8. Ballester C., Calvó-Armengol A., Zenou Y. Who's who in networks. Wanted: The key player // Econometrica. 2006. Vol. 74. N 5. P. 1403–1417.
- 9. Goyal S., Joshi S. Networks of collaboration in oligopoly // Games and Economic Behavior. 2003. Vol. 43. N 1. P. 57–85.
- 10. Bulow J., Geanakoplos J., Klemperer P. Multimarket oligopoly: strategic substitutes and complements // Journal of Political Economy. 1985. Vol. 93. N 3. P. 488–511.
- 11. Bramoullé Y., Kranton R. Public goods in networks // Journal of Economic Theory. 2007. Vol. 135. P. 478–494.
- 12. Azariadis C., Chen B.-L., Lu C.-H., Wang Y.-C. A two-sector model of endogenous growth with leisure externalities // Journal of Economic Theory. 2013. Vol. 148. P. 843–857.
- 13. Martemyanov Y. P., Matveenko V. D. On the dependence of the growth rate on the elasticity of substitution in a network // International Journal of Process Management and Benchmarking. 2014. Vol. 4. P. 475–492.
- 14. Milgrom P., Roberts J. The economics of modern manufacturing: technology, strategy, and organization // American Economic Review. 1990. Vol. 80. P. 511–518.
- 15. Milgrom P., Roberts J. Complementarities and systems: understanding Japanese economic organization // Estudios Económicos. 1994. Vol. 9. P. 3–42.
- 16. $Topkis\ D.\ M.$ Supermodularity and complementarity. Princeton: Princeton University Press, 1998. 288 p.
- 17. Cournot A. A. Recherches sur les principes mathematiques de la theorie des richesses par Augustin Cournot. Paris: Hachette, 1838. 199 p.
- 18. Başar T., Olsder G. J. Dynamic noncooperative game theory. London; New York: Academic Press, 1995. 511 p.
- 19. Петросян Л. А., Зенкевич Н. А., Шевкопляс Е. В. Теория игр. СПб.: БХВ-Петербург, 2012. 432 с.
 - 20. Мазалов В. В. Математическая теория игр и приложения. М.: Лань, 2017. 448 с.

Статья поступила в редакцию 23 декабря 2022 г.

Статья принята к печати 19 января 2023 г.

Контактная информация:

Kочевадов Bumanuŭ Aлексеевuч — аспирант; v.a.kochevadov@ya.ru

Седаков Артем Александрович — д-р физ.-мат. наук, проф.; a.sedakov@spbu.ru

Dynamic network model of production and investment*

V. A. Kochevadov, A. A. Sedakov

St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

 $^{^{\}ast}$ This research was supported by the Russian Science Foundation grant N 22-11-00051. http://rscf.ru/en/project/22-11-00051/

For citation: Kochevadov V. A., Sedakov A. A. Dynamic network model of production and investment. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2023, vol. 19, iss. 1, pp. 10–26. https://doi.org/10.21638/11701/spbu10.2023.102 (In Russian)

The paper studies a dynamic network game that models the competitive behavior of firms in a market. It is assumed that firms, under the condition of simultaneous and independent choice of their actions, implement the behavior that determines their production and investment behavior in each period. The production behavior of the firm reflects the ongoing quantities that it should produce and supply to the market. The investment behavior specifies the ongoing amounts of investment that the firm allocates to the modernization of its production technology in order to prevent it from becoming obsolete. Next, the unit cost is assumed to depend on the firm's investment and the investment of its competitors, which are determined by an exogenous network. Two types of Nash equilibria are characterized: open-loop and feedback. Finally, we analyze the impact of the network and related model parameters on firms' behavior, profits, and competitive advantage.

Keywords: competition, investment, dynamic game, network, Nash equilibrium.

References

- 1. Jackson M. O. Social and economic networks. Princeton, Princeton University Press, 2008, 520 p.
- 2. Galeotti A., Goyal S., Jackson M. O., Vega-Redondo F., Yariv L. Network games. *Review of Economic Studies*, 2010, vol. 77, pp. 218–244.
- 3. Jackson M. O., Zenou Y. Games on networks. *Handbook of game theory with economic applications*. Eds by P. Young, S. Zamir. Amsterdam, Elsevier Science Publ., 2015, vol. 4, pp. 95–164.
- 4. Novikov D. A. Igri i seti [Games and networks]. *Matematicheskaya teoriya igr i ee prilozheniya* [Mathematical game theory and applications], 2010, vol. 2, no. 1, pp. 107–124. (In Russian)
- 5. Goyal S., Moraga-Gonzailez J. L. R&D networks. *The RAND Journal of Economics*, 2001, vol. 32, no. 4, pp. 686–707.
- 6. Zhao J., Ni J. A dynamic analysis of corporate investments and emission tax policy in an oligopoly market with network externality. *Operations Research Letters*, 2020, vol. 49, pp. 81–83.
- 7. Cellini R., Lambertini L. Dynamic R&D with spillovers: Competition vs cooperation. *Journal of Economic Dynamics & Control*, 2009, vol. 33, pp. 568–582.
- 8. Ballester C., Calvó-Armengol A., Zenou Y. Who's who in networks. Wanted: The key player. Econometrica, 2006, vol. 74, no. 5, pp. 1403–1417.
- 9. Goyal S., Joshi S. Networks of collaboration in oligopoly. *Games and Economic Behavior*, 2003, vol. 43, no. 1, pp. 57–85.
- 10. Bulow J., Geanakoplos J., Klemperer P. Multimarket oligopoly: strategic substitutes and complements. *Journal of Political Economy*, 1985, vol. 93, no. 3, pp. 488–511.
- 11. Bramoullé Y., Kranton R. Public goods in networks. *Journal of Economic Theory*, 2007, vol. 135, pp. 478–494.
- 12. Azariadis C., Chen B.-L., Lu C.-H., Wang Y.-C. A two-sector model of endogenous growth with leisure externalities. *Journal of Economic Theory*, 2013, vol. 148, pp. 843–857.
- 13. Martemyanov Y. P., Matveenko V. D. On the dependence of the growth rate on the elasticity of substitution in a network. *International Journal of Process Management and Benchmarking*, 2014, vol. 4, pp. 475–492.
- 14. Milgrom P., Roberts J. The economics of modern manufacturing: technology, strategy, and organization. *American Economic Review*, 1990, vol. 80, pp. 511–518.
- 15. Milgrom P., Roberts J. Complementarities and systems: understanding Japanese economic organization. *Estudios Económicos*, 1994, vol. 9, pp. 3–42.
- 16. Topkis D. M. Supermodularity and complementarity. Princeton, Princeton University Press, 1998, 288 p.
- 17. Cournot A. A. Recherches sur les principes mathematiques de la theorie des richesses par Augustin Cournot. Paris, Hachette Press, 1838, 199 p.
- 18. Başar T., Olsder G. J. $Dynamic\ noncooperative\ game\ theory.$ London, New York, Academic Press, 1995, 511 p.

- 19. Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V. *Teoriya igr* [Game theory]. St. Petersburg, BKhV-Petersburg Publ., 2012, 432 p. (In Russian)
- 20. Mazalov V. V. Matematicheskaya teoriya igr i prilozheniya [Mathematical game theory and applications]. Moscow, Lan' Publ., 2017, 448 p. (In Russian)

Received: December 23, 2022. Accepted: January 19, 2023.

Authors' information:

 $Vitaly\ A.\ Kochevadov$ — Postgraduate Student; v.a.kochevadov@ya.ru

Artem A. Sedakov — Dr. Sci. in Physics and Mathematics, Professor; a.sedakov@spbu.ru