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The increased complexity of future 5G wireless communication networks presents a
fundamental issue for optimal resource allocation. This continuous, constrained optimal
control problem must be solved in real-time since the power allocation should be consistent
with the instantly evolving channel state. This paper emphasizes the application of deep
learning to develop solutions for radio resource allocation problems in multiple-input
multiple-output systems. We introduce a supervised deep neural network model combined
with particle swarm optimization to address the issue using heuristic-generated data. We
train the model and evaluate its ability to anticipate resource allocation solutions accurately.
The simulation result indicates that the trained DNN-based model can deliver the near-
optimal solution.

Keywords: multiple-input multiple-output systems, deep neural networks, heuristics, particle
swarm optimization.

1. Introduction. With the rise of the Internet of Things and the exponential growth
of mobile devices, the next-generation wireless network faces the formidable challenge of
keeping up with the growing number of wireless applications. Power and beamforming are
essential components of communication systems, playing a crucial role in determining the
effective capacity of a wireless channel [1].

Scaling wireless systems requires the appropriate distribution of this resource under
time-varying channel characteristics and user demands [2]. Different utility functions, such
as the weighted sum rate (WSR), have been created to measure the performance of net-
worked systems in numerous settings. The mutual interference among links and the high
coupling of optimization variables make it difficult to optimize utility functions under prac-
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tical restrictions, and solving these issues has shown to be convex and non-deterministic
polynomial-time hardness (NP-hard). However, multiple antenna technology plays a key
role in communication systems, and solving beamforming and power control problems
is critical to achieving optimal performance in large-scale device-to-device (D2D) net-
works [3].

In the research that has been done so far, many good ideas have been put forward for
how to solve problems with interference management [4] and optimal power control. The
most well-known is the weighted minimal mean square error (WMMSE), which uses local
channel information and converges to a stationary point in the problem of weighted sum-
rate maximization [5]. By recasting the initial non-convex issue as a succession of convex
problems, fractional programming (FP) can considerably ease the optimization of ratios
[6]. Although the approaches above can boost the potential throughputs of systems, in
each iteration of these iterative methods, complex calculations like matrix inversion must
be performed before convergence. Due to the high computing complexity of the system, it
is not viable to implement it in real-time applications [7].

Heuristic algorithms are the most commonly utilized solution for intractable issues
in wireless network [8]. Heuristic algorithms can be employed to obtain an approximation
of the ideal global solution without the need for a perfect mathematical model. Adaptive
particle swarm optimization (PSO) covers the resource allocation problem in wireless sen-
sor networks [9]. A single-layer modified artificial bee colony (ABC) is offered to address
the resource allocation problem in the underlying D2D communication network [10]. So
far, the heuristic’s high time complexity renders it inappropriate for instantaneous optimal
management of time-varying systems [11].

Motivated by recent advances, researchers have sought to adapt DL to address NP-
hard optimization issues in wireless networks. In supervised settings, deep neural network
(DNN) are applied to approximate the input-output mapping of the classic WMMSE
algorithm [12, 13]. In unsupervised approaches, some works implement neural networks to
parameterize the power allocation function and directly employ the optimization objective
as a loss function, obviating the need for solved problem instances [14]. Even though such
processes are easy to compute, it does not use prior knowledge to determine the algorithm’s
architecture or hyper-parameters. Even though this method is easy to compute, no prior
knowledge is used to choose the algorithm’s architecture or hyperparameters.

In this paper, we focus on the resource allocation problem of facilitating adaptation to
time-varying conditions [15]. To handle this issue, we present a novel deep learning-based
approach for computationally intensive and time-sensitive power allocation problems, with
a particular emphasis on its theoretical and practical efficiency for wireless multi-antenna
multi-user interference management challenges. We want to develop a supervised machine
learning algorithm (PSO-NN) to learn the mapping of PSO to achieve the performance of
PSO as much as possible. The key concept is to perform feature engineering to filter the
effective features, then treat the given heuristic algorithm as a black-box and try to learn
its input-output mapping relationships by using deep neural networks.

According to the summary and analysis of the results of the comparative experimen-
tal demonstrations in the literature, our proposed algorithm has significant performance
advantages for DL algorithms based on or modified from WMMSE. In [16], the Bayesian
Predictive Networks (BPNet) is trained offline using a two-step training strategy based
on a heuristic solution structure of an optimal MMSE. It shows 10 % more performance
enhancement than WMMSE. In [17], unfolding WMMSE maps a fixed number of itera-
tions of the WMMSE algorithm into trainable neural network layers. The performance is
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improved about 11 %. In [18], learning aided gradient descent (LAGD) algorithm opti-
mizes sending precoders by iterations based on implicit gradient descent and increase the
performance by 4 %. In our reaserach, PSO-NN shows 15 % performance enhancement
than WMMSE in large scale network, and can achieve 92 % the overall performance of
the PSO.

This paper’s primary contributions are as follows:

e we generate the dataset using a near-global optimal heuristic algorithm PSO. Com-
pared to other heuristic algorithms, this algorithm excels in the general scenario of wireless
communication networks [19];

e the experimental results show that the performance of our proposed model is sig-
nificantly improved in terms of sum rate compared to WMMSE based methods.

The rest of this paper is organized as follows. After the introduction, Section 2 dis-
cusses the system model, the formulation of the power allocation and beamforming issues,
and the representation for capturing the interference connections between various links.
Section 3 offers the methodology of our DNN-based approach. Section 4 presents the nu-
merical result to verify the framework’s performance. Finally, Section 5 concludes the
paper.

2. System model and problem formulation. In this study, we investigated a
single-cell D2D network like Figure 1 in which several transceiver pairs compete for a
fixed amount of bandwidth B. We assume that a single data stream may be sent and
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Figure 1. Example of D2D network with 2 transceiver pairs

received simultaneously across each connection. This throughput optimization problem
aims to design a beamformer transmitter for each data stream on each live connection
[20]. Consider there are K = {1,...,k} communication links; in other words, k transmit
antennas serve k single-antenna user equipments (UEs). The channel response from the link
transmitter j to the receiver ¢ are h;;. here ¢ and j are indexs of receiver and transmitter.
Let x; be the beamforming vector for the ¢ connection. Accordingly, the signal received at
receiver 4 is the superposition of signals from numerous transmitters, as described by
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here n; ~ N (0,0?) denotes the additive white Gaussian noise. The achievable sum rate
of link 7 can be expressed as the function
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where X is a set of all beamforming vectors, and X = (z1,...,2). When a single an-
tenna is utilized at transmitters, the beamforming design simplifies to a problem of power
distribution.

Typically, the aggregate performance of the communication system is determined by
a utility function of the possible connection rates. Weighted sum rate is the utility function
used here. Given each transmitter’s power restriction, the optimization issue is formulated
as
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where w; denotes the weight of link 7, and P,y indicate the transmit power constraint of
each communication link. When all connection weights are set to 1, the problem can be
considered a sum rate maximization problem.

3. Methodology. In this section, we build an efficient DNN-based framework for
solving resource allocation issues in MIMO networks. In order to achieve a near-global
optimal sum rate in real-time, we presented a two-step DNN-based power allocation tech-
nique. In the initial phase, we employ a heuristic random search approach to identify the
optimal power allocation that optimizes the system sum rate for each static channel state.
In the second phase, we predict the allocated powers in real-time online applications using
a well-trained DNN model. The following describes the introduction of the PSO algorithm
and the design of the DNN framework for optimal beamforming.

3.1. PSO algorithm. PSO is an optimization approach that Kennedy and Eberhart
presented in 1995 [15]. This algorithm is inspired by the swarm intelligence, social behavior,
and food-seeking strategies of bird flocks and schools of fish. It can be used to solve
optimization problems in a variety of wireless communication domains due to its simplicity
and low number of required parameters [21]. The swarm of particles begins randomly
moving throughout the search space until the optimal solution is identified. Each particle
is represented by a solution, and collectively, the solutions constitute a swarm. Based on
its prior experience and additional factors, each particle in the swarm generates the most
optimal solution.

Algorithm demonstrates a PSO implementation designed to optimize the resource
allocation problem. The optimization variable of the communication network optimization
problem is denoted by X = (1, ..., ), which comprises the set of beamforming vectors
given to each channel.

In the optimization problem considered in this paper, PSO first generates a group
of candidate solutions {X;4}, which move in the search space according to certain rules.
A guide to the best-known positions of {X;4}. When improved positions are found, these
positions guide the movement of neighboring {X;;}. This process is repeated and will
eventually converge to a satisfactory solution.
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Algorithm. PSO
Require: Generate initial population
Ensure: The best vector
while Termination condition not met do
for Each particle X;; with position p; do
Compute the achieved sum rate.
if fitness value is greater than the current best value ppes; then
Set current best value as ppest
end if
end for
Select the particle with the overall best fitness value and set it as gpes:
for Each particle do
Calculate particle velocity
Update position of particle
end for
end while

We use I!, and v!, to represent the position and velocity of each particle X;4 at
iteration t. The parameter d is the population size, 7 is the index of each particle and ¢
is the number of iterations, ¢; and co are learning factors, p; represents value explored by
ith particle, p, represents value explored by neighbours of the ith particle. The updated
steps are formulated as follows:

Uﬁl =vl, + ¢ -rand (0,1) - (pﬁd — l,fd) + ¢ -rand (0, 1) - (pzd — l;f‘d) ,

Lyt = lig +vig-

The fitness function incorporates a penalty function in order to enforce the optimization
problem’s constraints. This indicates that the accompanying fitness function deteriorates
significantly when a prospective solution breaches a constraint.

Our proposed algorithm is based on a supervised learning approach that requires a
large number of labeled samples during training. Therefore, we randomly generate the ini-
tial position of the UE in the communication network, and calculate the optimal allocation
strategies under different network conditions through PSO, and record the characteristics
of the UE at this time, that is, the channel state. As input vectors, we use the channel
gain of each user as features, while the output vector X comprises the set of beamforming
vectors given to each channel.

3.2. DNN model. We develop a fully-connected DNN architecture that predicts the
optimal resource allocation for K downlink UEs [3]. The objective is to discover a policy
P (-) that simulates the mapping of PSO which denoted by F' to estimate the optimal
allocated resource P £ {Pr}. We select a DNN parameterization of the policy P (-) with
learnable parameters, and beamforming vectors are estimated as P=p (F).

In the first stage of the process, offline supervised learning, the computationally de-
manding PSO algorithm determines the best-allocated strategy and employs it as the
output label. The interference relations characterized as a set of channel coefficients {h;;},
the communication relation characterized as a set of channel coefficients {h;;}. Note that
h is a complex function consisting of a real part and a complex part. We take these two
parts as features and input them into the neural network. Parameter Z; represent the
input layer’s feature vector, R is set of real number. The input feature of DNN can be
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formulaed as

_ complex real complex real
Zo = (RSP R L RSP e

where Ly = 2k? is the dimension of input feature. Scaling and vectorization of input
features are applied at the inputs of the proposed DNN. We use the largest absolute
proportion to the optimal distributed strategy, which is similar to the input features [22]:

optimal
_ Ty
T = - - S [0, 1] .
optimal optimal
max ( 7 s Ty

To handle the non-linear computations, we employ the rectified linear unit (ReLU)
as activation function at the hidden layers. There are L; neurons at the hidden layer i,
where © = 1,2, 3; Zy is the input factor, the output of the hidden layer ¢ is determined as
Zi = fr(wi_1Z;_1 +b;_1) € R and £, (Z) = max (0, Z) is the weight matrix and bias
vector, respectively. To match the output layer predictions between 0 and 1 as stated by
the output labels, the sigmoid function f, (Z) = 7 é, - is used at the output layer. The
dimension of output facter is k. Thus, the predicted resource allocation for K downlink
UEs using the DNN framework are expressed as follows:

[T1, 22, k] = fo (W3Z3 +b3),

where W; is the weight matrices and b; is bias vectors which are adjusted to reduce the
loss and more accurately forecast the optimal power allocation values. We evaluate the
loss functions based on the predicted and ideal power values: mean square error (MSE).
The formula for the MSE loss function is

K

1 N
Lyse = E Z (jk - {Ek)z.
k=1

The structure of DNN is show in Figure 2. Back-propagation is a process in which
the gradient of the loss function is transmitted from the output layer to the input layer.
As a result, the weight matrix W; and the bias vector b; are updated in order to decrease
the loss, which allows for more effective learning of samples and more accurate prediction
of the optimal resource allocation strategy.

3.3. Dataset generation and model training. The simulation parameters of the
system is shown in Table. We create a dataset for the offline supervised learning procedure
with the number of samples S = 5-10°. The channel gains, and UE locations with respect
to the BS are randomly distributed in the area to produce the channel vector for each UE.
The PSO algorithm is used to determine the associated optimally assigned powers, which
are calculated and stored in the dataset [25].

Table. Simulation parameters

Parameters Size
Number of antennas M = 256
Cell radius 200 m
BS transmit power 20 dBm
Path loss exponent n = 3.76
Noise PSD —174 dBm/Hz
Channel bandwidth 10 kHz
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Figure 2. Structure of the DNN

The complete available dataset is split into 80 % training and 20 % validation sets
during the offline learning process. We consider the hyper-parameters of DNN with 0.001
learning rate, 32 batch size, and ADAM optimizor. After the supervised learning, a brand-
new test dataset evaluates the online power allocation in time-varying scenes. The proposed
algorithmic technique is implemented using open-source DL framework in PyTorch [26].

4. Simulation results and analysis. To evaluate the performance of the DNN
based algorithm, we mainly compare it with the WMMSE based approach, which is a
widely used benchmark in the literature of sum rate maximization problem. The following
benchmarks are considered for comparison. All results on the test performance of WMMSE
are the average from 100 independent trials:

e WMMSE [5]: An approach based on optimization that converts the problem of
weighted mean square error reduction from the sum rate maximization difficulties in MIMO
interfering broadcast channels;

e WMMSE-NN |[23]: A 3-layer supervised DNN that learns the mapping of classical
WMMSE;

e PSO [24]: An iterative stochastic optimization technique based on swarm intelli-
gence.

Figure 3 demonstrates the comparative performance of DNN with different structures
in relation to the size of the training set. Either by adding more convolution layers or by
parameterizing with larger MLPs, the performance of DNN could be boosted. To demon-
strate the benefits of expanding MLPs, we show the results of DNNs with layer numbers
(2 and 3) and the hidden size of MLPs (256 and 512). When 5 - 10° samples are input,
the relative performance of a 3-layer DNN with a hidden size of 512 is 91.5 %. Adding
extra hidden layers to the DNN does not result in a substantial improvement; rather, it
can easily lead to overfitting. In order to balance performance and complexity, we use this
DNN structure in the subsequent trials.

Figures 4 and 5 depict the sum-rate and runtime findings in relation to the number of
UEs. As seen in Figure 4, the DNN-based approach outperforms its WMMSE counterpart
as the number of UEs increases. The relative sum-rate performance of DNN compared to
the optimal PSO algorithm is 91.5 %.

Moreover, Figure 5 illustrates the runtime comparison between PSO, WMMSE-NN
and WMMSE for 1000 systems states. Al inference is performed on an Nvidia 2070s deve-
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lopment card using offline-trained DNN architecture. We observe that the proposed DNN
approach outperforms the computationally intensive WMMSE technique by drastically
lowering its execution time. In the case of K = 12 UEs, for example, WMMSE requires
1056 sec whereas DNN requires only 0.08 sec. For iterative WMMSE, the running time
increases dramatically with the size of the problem dimension. In contrast, DNN-based
power allocation requires less processing time and is much less variable. For a trained
DNN model, the number of computations is constant. The processing time fluctuation
comes from the uncertainty of the computation of different floating point numbers and
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the read system time. For the heuristic algorithm, the time fluctuations mainly come from
the different initializations, i. e., different search starting points can lead to significant
differences in the time required to find the optimal solution.

5. Conclusion. We proposed a supervised learning-based framework PSO-NN for
solving the sum rate maximization issue in MIMO networks, which can detect interfe-
rence in complicated real-world wireless communication settings. Using specific network
setups and use cases, we illustrate the quality of the PSO-NN solution. In principle, the
approximations of the heuristic approach, can be applied to any network and scenario,
as it has been demonstrated that DNNs are capable of approximating any function ar-
bitrarily closely with sufficient training [27]. We can conclude that well trained PSO-NN
outperforms WMMSE based algorithms in terms of computation time and performance;
it is slightly inferior to PSO in terms of performance by 92 %, but can save 99 % of the
computation time.

However, there are several difficulties that we have not addressed in this study and
for which additional research is required. For the DNN’s (predictive) capabilities, it is
crucial to identify the optimal DNN structure, which is dependent on the setup of the
large-scale MIMO system and the selection of the hyperparameters. In the future, we will
investigate the feasibility of building optimum solution structures for more complicated
power allocation issues and implementing them into a DNN-based framework to boost
learning efficiency even more.
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Bospocmmas cioxknocts Gy rymux cereii 6ecripoBoguoil cBsasu 5G mpescrasisier coboii dyH-
JIaMEHTAJIbHYIO Ipo0JIeMy JJIsl OITUMAJILHOI'O PACIIPE/IEJIeHHsT PECYPCOB. DTa HElPEephIBHASI,
OrpaHWYeHHAsT 3a/1a9a ONMTUMAJBHOTO YIIPABJIEHUS JOJKHA PEIIATbCs B PEKUME PeabHOTO
BPEMEHH, TOCKOJIbKY PaCIpPeJieJIeHue MOIIHOCTU JOJI?)KHO COOTBETCTBOBATH MI'HOBEHHO Me-
HSIIOIIEMYCsl COCTOSIHUIO KaHaJia. B crarbe ocoboe BHUMAHUE YJIeJSIeTCsl IPUMEHEHUIO IIy0o-
KOro 00yueHust [l pa3pabOTKU PeIleHuil IIpobyieM pacupeeseHusl PaJuopecypPCoB B CUCTe-
MaX C HECKOJIbKUMU BXOJIAMM U HECKOJIbKUMU BbIxojiamu. KoHTposimpyeMast MOJIesb 11y GOKOi
HEWPOHHOM CETH MPEJICTaBIEHa B COYETAHUH C ONITUMUBAIUEN POsT YaCTHUIL JIJIsT PEIEHUSsT TIPO-
0JIEMBI C MCIIOJIb30BAHNEM IBPUCTUIECKN CTEHEPUPOBAHHBIX JaHHBIX. MbI 00y1uaeM Momens u
OIIEHUBAEM €€ CIIOCOOHOCTH TOYHO MPOrHO3UPOBATH PEIEHUsI IO PACIPEIEJIEHUI0 PECYPCOB.
Pesysibrar MoseiMpoBaHus MOKA3BIBAET, YTO XOPOIIO O0yJYeHHAas! MIPE/JIOKEHHAsT MOIEb MO-
2KeT 00eCIeInTh MOYTH ONTUMAJIBLHOE PEIeHNE.

Karouesvie crosa: CUCTEMBI C HECKOJIBKUMH BXOJIaMU M HECKOJIBKMMU BBIXOJAMH, IVIyOOKIe
HEHPOHHBIE CETH, SBPUCTHUKA, ONTUMHU3AINS POs JaCTHUII.
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