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Based on a class of semicontinuous functions, we prove a common fixed point theorem for
a pair of commuting mappings. As a consequence, we give another common fixed point for
the so-called weakly contractive mappings of type Er. The proven results are established in
the setting of bounded metric spaces without using neither the compactness nor the uniform
convexity. Some examples are built to demonstrate the superiority of the obtained results
compared to the existing ones in the literature. Furthermore, an application to a system of
functional equations arising in dynamic programming is given.
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1. Introduction. The metric fixed point theory goes back to the first decades of the
20" century, when in 1922 there occurred the famous Banach contraction principle (BCP
for short). This result has been used extensively in the study of solutions for differential
equations, dynamical systems, models in economy and related areas, game theory, physics,
engineering, computer science and other. This principle was the subject of several gene-
ralizations by many mathematicians. In this regard it is worth mentioning the important
papers by Nemytzki appeared in 1930 [1] and Edelstein published in 1962 [2] where the
authors prove that the strict contraction (d(Tz,Ty) < d(z,y), for all © # y € X, where
X is a metric space) has a unique fixed point if the space is assumed compact. As a gene-
ralization of this type of contractions, we refer to a more large class called nonexpansive
mappings (|72 — Ty|| < ||l — y| for all 2,y € X, where (X,| - ||) is Banach space).
It is well-known that this type need not have a fixed point in a general Banach space.
However, by enriching the space with some geometric properties like uniform convexity, it
is possible to have fixed points. In 1965, Browder [3], Gohde [4] and Kirk [5] independently
showed one of the most interesting extensions of BCP by proving that every nonexpansive
mapping of a closed convex and bounded subset of the Banach space X has a fixed point,
if the subset is supposed to be uniformly convex (for each 0 < ¢ < 2, there exists § > 0
such that for all ||| < 1,||y[| < 1) the condition ||z — y|| >  implies that |ZF2|| <1-§
(see [6]).

On the other hand, the idea of a common fixed point of commuting mappings verifying
certain contractive conditions in the setting of metric spaces was initiated by Jungck [7]
as an extension of BCP in 1976.
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At the same time, other mathematicians tried successfully to extend fixed point theory
and common fixed point theory to various abstract spaces. One of the most popular is the
partial metric spaces introduced by Matthews [8] (1994) as an extension of the concept
of the metric space such that the separation axiom d(z,z) = 0 of metric’s definition is
replaced by the condition o(x,x) < o(z,y), that is, o(z,z) > 0 for some z. It is widely
recognized that partial metric spaces play an important role in constructing models in the
theory of computation (see [9, 10]).

Matthews [8] affirmed that for any partial metric o on a nonempty set X, there exists
an induced metric d, : X x X — RT defined by

do(x,y) = 20(2,y) — o(z,2) = 0(y,y),

symmetrically
o(z,y) = a(x) + d(z,y) + aly). (1)

In (1) a: X — RT is defined by a(z) = 3o(z,2) and d(z,y) = 3do(z,y).
We point that the existence of a common fixed point result for commuting mappings
f,g on a complete partial metric space X remains valid under the following assumptions
(see [8]):
o(fz,gy) < ko(z,y), (2)

with k < 1 for all z,y € X.
It seems from (2) that the conditions

a(gx) < ka(z), (3)

a(fz) < ka(z), (4)

for all z € X are used.
As an improvement of the study in [11], in this paper, we extend conditions (3) and
(4) to
a(gr) < a(z), (5)
<

a(fx) x

ofz). (6)

Very recently in 2021, the authors in [12| proved a common fixed point for commuting
mappings f and g satisfying

Jof Ad(w,y) —d(fz,gy)} > 0. (7)
In a comparison with the famous result proved by the author [2], the existence of a common
fixed point for the class mentioned in (7) is established without adding the compactness
property to the metric space. (The reader can see [11-17] and references therein, for recent
works in this direction.)
In the present work, by weakening conditions (3) and (4) and considering the class of
certain lower semicontinuous function o we introduce a new category of mappings

x;%x{a(m) +d(z,y) + a(y) — a(fz) — d(fr,gy) — algy)} > 0,

as a combination with (5)—(7).
For such kind of mappings, a new common fixed point theorem is also presented. In
this way, we obtain a very large class compared with other results in the literature. In other
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words, we prove a common fixed point theorem for a new type of nonexpansive mappings
(i.e., d(gz, gy) < d(x,y)) without using neither the compactness nor the uniform convexity
which is difficult in the practice. Moreover, motivated by [12, 13, 18], we prove via the first
result a common fixed point for the so-called weakly contractive mappings of type Er.

As an application, in the last section, we show how to employ our main result to
solve some problems which appear in dynamic programming. This theory was initiated by
Bellman [19] and it is strongly connected with the multistage decision processes [20], in
which some functional equations of type

fi(z) = sup{g(z,y) + Gi(z,y, fi(p(z,y)))} (8)
yeD

arise. We point that the existence of a solution for (8) is proven under new weak conditions.

2. Preliminaries. The aim of this section is to present some notions and results used
in the paper. Throughout the article, we denote by R the set of all real numbers and by
N the set of all positive integers.

Let (X, 7) be a topological space and p : X x X — [0, 00) be a function. For any & > 0
and any z € X, let By(z,e) = {y € X : p(z,y) < €}

Definition 1 (Definition 2.1 [21]). The function p is said to be 7-distance if for each
2 € X and any neighborhood V' of z, there exists € > 0 such that By(z,¢) C V.

Definition 2 ([21]). A sequence {z,,} in a Hausdorff topological space X is a p-Cauchy
if it satisfies the usual metric condition with respect to p (i.e., lim, m—o0 P(Tn, Tm) = 0).

Definition 3 (Definition 3.1 [21]). Let (X, 7) be a topological space with a 7-dis-
tance p.

e X is S-complete if for every p-Cauchy sequence (z,), there exists x in X with
lim p(z, z,) = 0.

e X is p-Cauchy complete if for every p-Cauchy sequence (z,,), there exists z in X
with lim x,, = x with respect to 7.

e X is said to be p-bounded if sup{p(x,y) : z,y € X} < 0.

Lemma 1 (Lemma 3.1 [21]). Let (X, 7) be a Hausdorff topological space with a T-dis-
tance p, then

e p(x,y) =0 implies x = y;

o if (z,) is a sequence in X such that lim, . p(x,z,) = 0 and lim, . p(y,z,) =0,
then x = y.

Definition 4 ([8]). A partial metric on a nonempty set X is a function o : X x X —
R* such that for all z,y, z € X:

a) o(x,x) = o(x,y) = o(y,y) if and only if x = y;
b) o(z,x) < olz,y);

c) o(z,y) = oly,x);

d) o(z,2) + o(y,y) < olz,y) + o(y, 2).

The pair (X, o) is called a partial metric space.

Definition 5 ([8]). Let (X, o) be a partial metric space. Then

i) a sequence {z,} in X converges to a point x € X if lim,, o o(x,2,) = o(z, );

i1) a sequence {z,} C X is Cauchy if lim,, ,,—yo0 0(@m,, T,) exists and is finite;

ii1) X is complete if every Cauchy sequence {x,} C X converges to a point = € X,
that is, limy, n—yoo 0(Tm, Tn) = o(z,z) = limy, o0 o (T, Tp)-

Theorem 1 (Theorem 2.1 [12]). Let (X, 7) be a p-bounded Hausdorff topological
space with a T-distance p. Let f and g be two selfmappings of X, satisfying the conditions:

* fog=golf;

o p(fx,gy) < kp(x,y), for allz,y € X and k < 1.
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If (X, 7) is a S-complete space, then f and g have a unique common fized point.

Theorem 2 (Theorem 2.5 [12]). Let (X, d) be a bounded complete metric space (X, d).
Let f and g be two selfmappings of X, satisfying the conditions:

* fog=golf;

o inf{d(z,y) —d(fz,gy)} > 0.

Then f and g have a unique common fized point.

Definition 6 (Definition 2.10 [12]). Let (X, d) be a metric space and f,g: X — X
be a two selfmappings of X such that f og = go f. The mappings f and g are said to
be Ep-weakly contractive if d(fz,gy) < d(z,y) — ¢(d(z,y) + 1) for all z,y € X, where
¢ :[1,00) = [0,00), ¢(1) = 0 and gr>1€ p(t) > 0.

Theorem 3 (Theorem 2.11 [12]). Let (X, d) be a bounded complete metric space and
f, g be two Ep-weakly maps on X. Then f and g have a unique common fized point.

Lemma 2 (Lemma 3.2 [12]). Let A be a subset of R such that sup(A) < +oo and
G : R — R be nondecreasing and continuous function. Then we have the formula

G(sup A) = sup G(A).

Definition 7. Let (X,d) be a metric space, a function « : X — [0,00) is said to be
lower semicontinuous if for all y € X and {z,} C X such that lim, o 2, = y, we get
formula

a(y) < lim inf a(z,).
n—oo

Lemma 3 (Lemma 2.2 [11]). Let (X, d) be a metric space and p: X x X — R™T be a
function defined by

plz,y) = @A) _

3

where a : X — RT is a function. Then p is a Tq-distance on X where 74 is the metric
topology.

Lemma 4 (Lemma 2.3 [11]). Let (X, d) be a bounded metric space and o : X — RT
is a bounded function. Then the function p defined in Lemma is a bounded T-distance.

Lemma 5 (Lemma 2.4 [11]). Let (X, d) be a complete metric space and o : X — RY is
a lower semicontinuous function. Then the function p defined in Lemma is a S-complete
T-distance.

3. Main results. Now, we are able to prove our main results.

Theorem 4. Let (X, d) be a bounded complete metric space (X,d). Let f and g be
two selfmapping of X satisfying the following conditions:

* fog=golf;

o infia(z) +d(@,y) +aly) - o(fz) - d(fz,9y) — algy)} > 0,
where o : X — [0,00) is a bounded and lower semicontinuous function. Then f and g have
a unique common fixed point.

Proof Weputy= ir;éf {a(z) +d(z,y) + aly) — a(fx) — d(fz, gy) — a(gy)}, and

z#y

hence

a(fz) +d(fz, gy) + a(gy) < a(z) +d(z,y) + aly) — 7,
for all x # y € X. Therefore,

e(fo)td(fr.gy)+algy) ¢ pea()tdy)+aly)
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with k = e~ < 1. Then
p(fz, gy) < kp(z,y),

for all 2,y € X, with p(z,y) = e®@+d@v)+aly) _ 1 is the r-distance defined in Lemma 3.
Now, we deduce from Theorem 1, Lemmas 2-5 that f and g have a unique common fixed
point. O

Corollary 1. Let (X,d) be a bounded complete metric space (X,d). Let f be a
selfmapping of X. If there exists 7, j € N such that

inf {a(x) +d(z,y) +a(y) — a(f'z) —d(f'z., fy) — ()} > 0.

Then f has a unique fixed point.

P roof We have for all m,n € N, f"o f™ = f™o f*. Then, f* and f’ satisfy all
conditions of Theorem 4, so there exists a unique u € X such that fiu = f/u = u. Also,
fofiu=flofu= fuand fo fiu= fIo fu= fu, by uniqueness we obtain fu =wu. 0O

Corollary 2 (Theorem 2.5 [11]). Let (X,d) be a bounded complete metric space
(X,d). Let f be a selfmapping of X satisfying the condition

ir;i{oz(x) +d(z,y) + aly) — a(fr) — d(fz, fy) — a(fy)} >0,

where v : X — [0,00) is a bounded and lower semicontinuous function. Then f has a
unique fixed point.
Example 1. We endow the set X = {0, 1,2}? with the metric

d((zlayl)v (ﬂfzyyz)) = |[(z1,91) — (¥2,y2)|l1 = |21 — 22| + [y1 — ya2|-

It is clear to see that (X,d) is not an uniform convex space. Indeed, for ¢ = 1, z = (1,0)
and y = (0,1) we have

1
lzlle =Nyl =1, e —ylh =2>1=¢ and Slla+ylh =1>1-4,

for each 6 > 0. Define the following selfmapping f and g on X:
f(0,0) = f(1,0) = f(0,1) = f(1,1) = (0,0),

f(0,2) = f(2,0) = (1,0),
f(1,2) = f(2,1) = f(2,2) = (0,1),
9(0,0) = g(1,0) = g(0,1) = g(1,1) = 9(0,2) = g(2,0) = (0,0)
9(1,2) = g(2,1) = 9(2,2) = (1,0)
and a function o : X — RT
a(0,0) = «(1,0) = «(0,1) =0,
a(l,1) =a(1,2) = a(2,1) = «(0,2) = (2,0) =1
a(2,2) =2

Then, go f = fog and for all z # y € X, we have

a(z) +a(y) + d(fz, gy) — a(fz) — a(gy) — d(fx,gy) > 1.
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Hence f and ¢ satisfy all conditions of Theorem such that f and g have the unique
common fixed point (0, 0).

Remark. The above example illustrates the usability of Theorem 4 and shows that
this Theorem is a real extension of Theorem 2.5 in [12], indeed

d((1,2),(2,1)) —d(f(1,2),9(2,1)) =0

d(f(lv 2)v 9(27 1)) < d((lv 2)7 f(27 1))a

which are nonexpansive mappings.
Example 2. Let X = B(0, 1) be the unit closed ball of a real Banach space (E, || . ||).

If we take f =g =0 and
0, ifx=0,
a(e)={

, else.

We observe that f and g satisfy all conditions of Theorem 4 and 0 is the unique common
fixed point even if the space X is not compact.

In the following, @ is the class of all functions ¢ : [1, +00) — [0, +00) satisfying:

e o(t) =0if and only if t = 1;

o inf () > 0;

o o(t) <tforalltell,+00).
As a consequence of Theorem 4, we get a result for a new class of weakly contractive maps
defined as follows:

Definition 8. Let (X, d) be a metric space and f,g : X — X be a two selfmappings
of X such that fog=go f. f and g are said to be weakly contractive of type Er, if

where A(z,y) = a(z) + d(z,y) + a(y), for all z,y € X, p € P and a: X — [0, +00) is a
bounded and lower semicontinuous function.
Theorem 5. Let (X, d) be a bounded complete metric space and f,g be two weakly
contractive maps of type Ep on X. Then f and g have a unique common fized point.
Proof. Let x # y € X, using Definition 8, we obtain

0 <info(t) < p(Ale,y) +1) < Alz,y) — A(fz, gy),

then inf,,{A(z,y) — A(fz,gy)} > 0. From Theorem, we conclude that f and g have a
unique common fixed point. O

Corollary 3. Let (X, d) be a bounded complete metric space. If there exist 4,7 € N
such that f?, f7 be two weakly contractive maps of type Er on X. Then f has a unique
fixed point.

Corollary 4 (Theorem 2.11 [12]). Let (X,d) be a bounded complete metric space
and f, g be two Ep-weakly contractive maps on X. Then f and g have a unique common
fixed point.

Example 3. Let X = {1,2} U [3,4] with the usual metric d(z,y) = |z — y| for all
xz,y € X. Define f,g: X — X by

(1, ifze{1,2,3},
f(m)_{ 3, ifze(3,4]

Becruuk CIIGIY. IIpuknannas maremaruka. udopmaruka... 2024. T. 20. Bei. 3 371



(1, ifzre{1,2,3},
g(x){ 2, ifz e (3,4],

a function o : X — R defined by

(o0, ifte{1,23),
a(t)_{ t42, ifte (34,

and a function ¢ : [1,00) — [0, 00) defined by

0, ift=1,
‘P(t){ 1, ift>1.

Therefore, f and g satisfy all assumptions in Theorem 4 and f1 = g1 = 1. But the pair
(f,g) does not satisfy Theorem 2.11 in [12], indeed

d(f4,93) =2>0=d(4,3) — ¢(1 +d(4,3)).

3. Application. Throughout this section we assume that X and Y are Banach spaces.
In the language of dynamic programming, S C X is the state space and D C Y is the
decision space. Let p: SxD = S, g: SxD —>Rand G;: SxDxR—=R, i =1,2. B(S)
denotes the set of all bounded real-valued functions on S. For h, k € B(S), let

d(h, k) = sup{|h(z) — k(z)| : x € S}.

It is easy to see that d is a metric on B(S) and (B(S),d) is a complete metric space.
In this section, we study the existence and uniqueness of a common solution of the
following class of functional equations arising in dynamic programming:

fi(z) = Sgp{g(:ﬂ Y) + Gilz,y, filp(z,y)))}, (9)
where g, G; are bounded, i = 1,2. We define T; : B(S) — B(S) by
Tifi(x) = Sgg{g(ﬂc,y) + Gi(z,y, filp(z,y)))}, i=1,2. (10)

Clearly, T; are well-defined since g and G; are bounded.
Suppose that z — G;(.,., ) be nondecreasing and continuous functions such that

Gi(z,y, 2 + Ga(a, b, ¢)) = Ga(2,y, 2 + G1(a, b, ¢)), (11)

for all x,a € S, y,b € D and z,c € R.

Now, we prove the existence and uniqueness of a common solution for the system of
functional equations (9).

Theorem 6. Let T; : B(S) — B(S) be two operators defined by (10) and assume the
following conditions are satisfied: there exists M € R* such that

‘Gl(x Y, ( )) GQ( x,Y, ( ))' gd(hak)a

9(2.) + Ga (., () < ] - %M (12)

and
9(x,y) + Gao(z,y, k(z)) < ||k - (13)
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for all (h,k,z,v,y) € B(S)? x S? x D, where h(x) # k(x). Then the system (9) has a

unique bounded solution.

P r o o f. Using condition (11) and the fact that x — G1(.,.,z), z — Ga(.,.,x) are
nondecreasing and continuous functions, we get by Lemma 2 that 77 o To = T5 o Ty. Now,
let A be an arbitrary positive number, let € S and h, k € B(S), there exist y, z € D such

that
Tih(z) < g(z,y) + Gi(z, y, h(p(z,y))) + A,
Trk(z) < g(x,2) + Ga(z, 2, k(p(x, 2))) + A.
On the other hand, by the definition of T;, we get
Tlh(x) =2 g(a:, Z) + Gl(xa 2, h(p(I, Z))),
Tok(x) > g(z,y) + Ga(z,y, k(p(2,y)))-
It follows from (14) and (17) that

Tlh(x) - TQk(m) < Gl(xvy’ h(p(x’y))) - GQ(x7y7 k(p(x,y))) + >‘7
< |Gi(x,y, hlp(x,y))) = Ga(2,y, k(p(2,y)))| + A

Hence

Tih(x) — Tok(z) < d(h, k) + A
Similarly from (15) and (16)

Tok(x) — Thh(z) < d(h, k) + A
In view of (18) and (19), we obtain

| Tyh(x) — Tok(x)] < d(h, k) 4+ A
or equivalently

d(Tyh, Tok) < d(h, k) + A
Since A is taken arbitrary, then we obtain
d(T1h, Tok) < d(h, k),

for all h # k € B(S).
Now, using (12) and (13), we get

o(Tvh) < alh) — %M

and 1
a(Trk) < a(k) — §M,
where «a(h) = ||h|| which is a lower semicontinuous function.
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Therefore, we conclude from (20)—(22) that

h;ékig]fg(s) {a(h) +d(h, k) + a(k) — a(Tyh) — d(Tih, Tok) — a(Tgk)} > 0.

Finally, we conclude by Theorem 4 that the functional equations (9) has a unique common
bounded solution. |

4. Conclusion. Some common fixed point theorems are proved under new weak
conditions (without using neither the compactness nor the uniform convexity). Moreover,
an application is done to show the utility of the main results.

In addition, the work presented in this document provides tools allowing functional
equations in dynamic programming. On the other hand, it opens the way to other future
researches:

e extend the proved theorems for the case of four mappings instead of two;

e generalize the results in the setting of generalized orthogonal sets (see [22, 23]).

I would like to express my sincere gratitude to my affiliation “Department of Mathe-
matics, Faculty of Sciences Dhar El Mahraz”.
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OG6 o0111€iT HEMOABMYKHOI TOYKE: HOBbIE PE3YJIbTAThI JJIsI KOMMYTUPYIOIIAX
OTOOpaKEeHUI U UX NPUJIOXKEHNE K JUHAMUYECKOMY MPOrpaMMHUPOBaAHUIO

10. Tyaav

VYuusepcurer um. Cumu Myxammata 6en AGpasuiaxa, Mapokko, BP 2626 FES, ®ec,
30000, mrocce Nmyse

Has qurupoBauust: Touail Y. Common fixed point results: new developments on commuting
mappings and application in dynamic programming // Becruuxk Canxr-Ilerep6yprckoro yHusep-
cureta. [Ipuknanmas maremaruka. Uudopmaruka. [Iporecesr ynpasmenust. 2024. T. 20. Boim. 3.
C. 366-375. https://doi.org/10.21638 /spbul0.2024.305

Ha ocnoBe k/1acca KBa3nHENIPEPHIBHBIX (DYHKINN T0Ka3aHa TeopeMa 00 0b1ielt HeIroABUKHOMN
TOYKe Il ITapbl KOMMYTHUPYIOIUX OTOOparkeHnii. B KadecTBe Ciie/ICTBUS [OJIydeHA APyTrast
001Iast HEMOIBUKHAS TOYKA JJIsl TaK HA3BIBAEMBIX CJIa00 CKUMAIOIIUX OTOOpParKeHU THIa
Er. Jloka3zaHHble Pe3yJIbTaThbl YCTAHOBJIEHBI B OTPAHUYEHHBIX METPUYECKUX IIPOCTPAHCTBAX
6e3 TpeboBaHMsI KOMIIAKTHOCTH MJIM PABHOMEDHOM BBITyKJI0CTH. [IprBeieHbl HECKOJIBKO Ipu-
MEpOB, JIEMOHCTPHUPYIOIINX MPENMYIIECTBO MPEJICTABIEHHBIX PE3yIbTATOB MEPE] OIyOIUKO-
BaHHBIMU paHee. Kpome TOro, paccMOTpeH IpUMep IIPUJIOXKEHUsI Pe3yJIbTaTOB K CHUCTEME
bYHKIMOHAIBHBIX YPABHEHH, BOSHUKAIONMIEH B IMHAMIYIECKOM IPOrPAMMHUPOBAHUM.

Kaoueswie caosa: obIiast HETIOABUAKHAST TOUKA, CIa00 C2KUMAIOITHE 0TOOparkeHus Tuna Fr,
KOMMYTHUPYIOIIHE 0TOOparKeHnsl, KOMIIAKTHOCTh, PABHOMEPHAs BBIIIYKJIOCTb.
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