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For an arbitrary convex function, using the infimal convolution operation, a family of
continuously differentiable convex functions approximating it is constructed. The constructed
approximating family of smooth convex functions Kuratowski converges to the function under
consideration. If the domain of the considered function is compact, then such smooth convex
approximations are uniform in the Chebyshev metric. The approximation of a convex set by
a family of smooth convex sets is also considered.
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1. Introduction and preliminaries. The concepts of convex sets and convex func-
tions are fundamental in Convex Analysis (see, e. g., [1–3]). The class of convex functions
is one of the most studied among the family of nonsmooth functions. Convex functions
are known to be nondifferentiable. Convex sets and convex functions are the main tools
in theoretical studies in many subjects of nondifferentiable optimization. In the absence
of smoothness, the convexity enables us to use a rich set of analytical tools for the deve-
lopment of the theory of optimality conditions.

The aim of this paper is to construct a family of smooth convex functions, which
approximates a given convex function and a family of smooth convex sets, which approxi-
mates a given convex set. The need for function approximation arises in many branches
of applied mathematics, and in particular in computer science (see, e. g., [4]). For con-
structing such an approximation family, the operation of taking the infimal convolution is
used. As it is known from Convex Analysis [3], if one of the convex functions involved in
the infimal convolution operation is essentially smooth, then the resulting function is also
smooth. The Moreau — Yoside regularization is the most well-studied among the functions
obtained as a result of the infimal convolution. The Moreau envelope also smoothes a
nonsmooth convex function. However, these functions approximate well the given func-
tion in a neighborhood of an optimal point. Based on such regularization, algorithms,
called proximal algorithms, are widely used for solving convex optimization problems. A
lot of investigations have been done on the properties of the Moreau envelope, including
differentiability, regularization (see, e. g., [5–7]).

A new approach for constructing a family of smooth convex functions uniformly ap-
proximating a given convex function on a convex compact set is proposed. If the function
is finite on the whole Euclidean space, then it is shown that the epigraphs of the resulting
family are Kuratowski continuous.

The article is organized as follows. The most important properties of convex functions
and set-valued mappings which are applied in proving the main theorems are collected in
Section 1. The main results of this paper are presented in Sections 2 and 3. In Section 2, a
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family of approximation convex sets is constructed for an arbitrary closed set. Using this
family, we form a set-valued mapping and prove that any convex set from this family is
smooth and the set-valued mapping is Kuratowski continuous. In Section 3, an algorithm
for forming a family of smooth convex functions, which approximates a given convex
function is presented. The properties of this family are investigated. Some examples are
given.

2. The main theorems.
2.1. Notation. In the paper, the standard notation and terminology of Convex

Analysis (see, e. g., [1–3]), are used.
Let f : Rn → R

⋃
{+∞}

⋃
{−∞}. A set domf = {x ∈ Rn

∣∣ f(x) < +∞} is called an
effective domain of a convex function f . A set

epif = {(x, µ) ∈ Rn × R
∣∣ f(x) ⩽ µ}

is called an epigraph of f .
A convex function f is said to be proper if its epigraph is nonempty and contains no

vertical lines, i. e., if f(x) < +∞ for at least one x and f(x) > −∞ for every x. In the
future, we will consider only proper convex functions. For proper convex functions, it is
possible to give another definition, which equivalent to the above. A function f is called
closed, if its epigraph is a closed set. A proper convex function is called essentially smooth,
if it satisfies the following three conditions [3]:
• the set C = int (domf) is not empty;
• f is differentiable for each x ∈ C;
• if x1, x2, . . . is a sequence in C converging to a boundary point x of C, then

lim
i→+∞

||f ′(xi)|| = +∞.

Here and further, we will consider only the Euclidean norm ||x|| =
√
⟨x, x⟩. Note

that any smooth convex function on Rn will be essentially smooth, as the set of sequences
satisfying the last condition is empty.

The conjugate function of f is

f∗(v) = sup
x∈Rn

{⟨x, v⟩ − f(x)}, v ∈ Rn.

Clearly, the equality

f∗(v) = sup
x∈domf

{⟨x, v⟩ − f(x)}, v ∈ Rn,

is true. Note some of the properties of the conjugate functions [3]:
• f∗ is closed and convex (even when f is not convex);
• the Fenchel inequality: the definition implies that

f(x) + f∗(v) ⩾ ⟨x, v⟩ ∀x ∈ Rn, ∀v ∈ Rn;

• if f is a closed proper convex function, then f∗ is also a closed proper convex
function and the following equality f(x) = f∗∗(x) is true.

2.2. Distance function and set-valued mappings. Let C(Rn) be the collection
of nonempty closed subsets of Rn. Take a set X ∈ C(Rn). In our case the distance function
d(·, X) : Rn → [0,+∞) is defined by

d(z,X) = min
x∈X
||z − x||.

536 Вестник СПбГУ. Прикладная математика. Информатика... 2022. Т. 18. Вып. 4



Let {Xn} be a sequence of closed sets Xn ∈ C(Rn) and X ∈ C(Rn). We will define
Xn → X, if d(·, Xn)→ d(·, X) pointwise [8].

For any sequence of sets {Xn}, Xn ∈ C(Rn) and a set X ∈ C(Rn) define [9, 10] the
Kuratowski limit inferior (or lower closed limit) of Xn → X, n→ +∞, is

Li
n→+∞

Xn =

{
x ∈ X

∣∣∣∣ lim sup
n→+∞

d(x,Xn) = 0

}
=

=

{
x ∈ X

∣∣∣∣ for all open neighbourhoods U of x,
U ∩Xn ̸= Ø for large enough n

}
,

the Kuratowski limit superior (or upper closed limit) of Xn → X, n→ +∞, is

Ls
n→∞

Xn =

{
x ∈ X

∣∣∣∣ lim inf
n→+∞

d(x,Xn) = 0

}
=

=

{
x ∈ X

∣∣∣∣ for all open neighbourhoods U of x,
U ∩Xn ̸= Ø for infinitely many n

}
.

If
Li

n→∞
Xn = Ls

n→∞
Xn = X,

then we say that {Xn} Kuratowski converges to X.
Let X ⊂ Rn and Y ⊂ Rm be some sets. Denote by 2Y the set of all nonempty subsets

of Y . Let ψ : X → 2Y be set-valued mapping. A set-valued mapping ψ is called upper
semicontinuous at a point x ∈ X, if from

xn → X, xn ∈ X, yn → y, yn ∈ ψ(xn),

it follows y ∈ ψ(x). A set-valued mapping ψ is called upper semicontinuous, if it is upper
semicontinuous at each point x ∈ X. A set-valued mapping ψ is called lower semiconti-
nuous at a point x ∈ X, if that for any y ∈ ψ(x) and any sequence {xn}, xn → x, xn ∈ X,
there is such a sequence {yn}, yn ∈ ψ(xn), that yn → y. A set-valued mapping ψ is called
lower semicontinuous, if it is lower semicontinuous at each point x ∈ X. If a set-valued
mapping ψ is upper semicontinuous and lower semicontinuous at each point x ∈ X, then
ψ is Kuratowski continuous. If a set-valued mapping ψ is upper semicontinuous, then for
any x ∈ X the set ψ(x) is closed. A set-valued mapping ψ is called bounded, if it translats
bounded sets into bounded sets.

Denote by δ(X,Y ) = sup
x∈X

inf
y∈Y
||x− y||. The function

ρH(X,Y ) = sup{δ(X,Y ), δ(Y,X)}

is called the Hausdorff distance between the convex sets X and Y . A set-valued mapping
ψ is called Hausdorff continuous at a point x ∈ X, if from xn → x, xn ∈ X, it follows

ρH(ψ(xn), ψ(x))→ 0.

A set-valued mapping ψ is called Hausdorff continuous, if it is Hausdorff continuous at
each point x ∈ X. If a set-valued mapping ψ is Hausdorff continuous on X, then it is
Kuratowski continuous. If a bounded set-valued mapping ψ is Kuratowski continuous on
X, then it is Hausdorff continuous.
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2.3. Infimal convolution of two convex functions. Let f1, f2 : Rn → R∪{+∞}
be proper convex functions. A function

f(x) = inf
x1 + x2 = x
x1, x2 ∈ Rn

{f1(x1) + f2(x2)} = inf
x1∈Rn

{f1(x1) + f2(x− x1)}

is called the infimal convolution of functions f1, f2 and is denoted by f(x) = (f1 ⊕ f2)(x).
It is known, that
• the function f is convex on Rn;
• the operation of taking the infimal convolution is commutative and associative;
• an infimal convolution is known as epigraphical addition. Because geometrically

performing the infimal convolution of the function f1 using the function f2, we add the
epigraph of f1 to the epigraph of f2:

(f1 ⊕ f2)(x) = inf
{
µ ∈ R

∣∣ (x, µ) ∈ epi f1 + epi f2
}
.

The infimal convolution f1 ⊕ f2 is called exact at a point x = x1 + x2, if

f1(x1) + f2(x2) = min
y1 + y2 = x
y1, y2 ∈ Rn

{f1(y1) + f2(y2)}.

Note some properties of convex functions obtained as the result of the infimal convo-
lution operation. Let f1 and f2 be convex functions on Rn, then
• dom (f1 ⊕ f2) = dom f1 + dom f2;
• the following equality

(f1 ⊕ f2)∗ = f∗1 + f∗2 (1)

holds
• if ri (dom f1) ∩ ri (dom f2) ̸= Ø, then (f1 + f2)

∗ = f∗1 ⊕ f∗2 ;
• if ri (dom f1) ∩ ri (dom f2) ̸= Ø, and f1 is essentially smooth, then f1 ⊕ f2 is

essentially smooth;
• if the functions f1 and f2 are not identically equal +∞ and the infimal convolution

f1 ⊕ f2 is exact at a point x = x1 + x2, then

∂(f1 ⊕ f2)(x) = ∂f1(x1) ∩ ∂f2(x2).

Let f1 be a continuous convex function on Rn and f2(x) =
1
2 ⟨Mx, x⟩, where M is a

definite positive matrix. The function

f(x) = (f1 ⊕ f2)(x) = inf
y∈Rn

{
f1(y) +

1

2
⟨M(x− y), (x− y)⟩

}
is called the Moreau — Yosida regularization.

Example 1. Let X ⊂ Rn be a convex set, f1(x) = δ(X,x) be the indicator function
of this set, f2(x) = ||x||, x ∈ Rn, then

f(x) = (f1 ⊕ f2)(x) = inf
x1∈X

||x− x1||.

Example 2. Fix ε > 0. Denote

tε(x) =

{
−
√
ε2 − ⟨x, x⟩, ||x|| ⩽ ε,
+∞, ||x|| > ε,

x ∈ Rn.
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The function tε(x) is determined only in a ball of radius ε centered at the zero point and
it is essentially smooth, i. e., it is differentiable in each internal point x ∈ int dom tε,
and if x1, x2, . . . is a sequence of elements of int dom tε, which converges to the point
x ̸∈ int dom tε, then lim

i→+∞
||f ′(xi)|| = +∞. It is easy to see that

t∗ε(v) = ε
√
1 + ⟨v, v⟩, v ∈ Rn, ε > 0.

Therefore, the effective domain of the conjugate function t∗ε is the whole space Rn.
3. Smooth approximation of convex sets. In this section, we will propose a

method for constructing a family of smooth convex sets approximating a given set.
Let K ⊂ Rn be a cone. A cone K∗ = {y ∈ Rn | ⟨y, x⟩ ⩾ 0 ∀x ∈ K} is

called a dual cone to K. Let X ⊂ Rn be a closed and convex set. A set N(X,x) ={
y ∈ Rn

∣∣ ⟨y, z − x⟩ ⩽ 0 ∀z ∈ X
}

is called a normal cone to the set X at x ∈ X.
Note some properties of normal cones:
• the normal cone is a closed convex cone;
• let X ⊂ Rn be a closed convex set. If x ∈ X, then

N(X,x) = −[cone (X − x)]∗ = −Γ∗(X,x),

where Γ(X,x) is the cone of feasible directions at the point x. Here coneA denotes a
convex conical hull of a set A.

A closed convex set is called smooth, if for each one of its boundary point there is a
unique support hyperplane. Thus, if the normal cone at every boundary point of a closed
convex set consists of a single ray, then this set is smooth.

Let a set X ⊂ Rn be closed and convex and assume that it does not coincide with
Rn. Fix ε > 0 and form a closed convex set

X(ε) = X + εB1(0n),

where Br(x0) = {x ∈ Rn | ||x− x0|| ⩽ r}.
Theorem 1. A normal cone to an arbitrary boundary point z0 ∈ bd X(ε) of the set

X(ε) consists of a single ray.
P r o o f. Fix ε > 0. Take a boundary point z0 ∈ bd X(ε) and project it onto the set

X, i. e., we find a point x0 such that

x0 = arg min
x∈X
||x− z0||.

The point x0 is unique and ||x0 − z0|| = ε. Show that

N(X(ε), z0) = { y ∈ Rn
∣∣ y = λ(z0 − x0) ∀λ ⩾ 0 }.

First, let us prove that (z0 − x0) ∈ N(X(ε), z0), i. e.

⟨z − z0, z0 − x0⟩ ⩽ 0 ∀z ∈ X(ε).

Take a point z ∈ X(ε). If z ∈ X, then

⟨z − z0, z0 − x0⟩ ⩽ −||x0 − z0||2 = −ε2 < 0. (2)

If z ̸∈ X, then there exist points x ∈ X, p ∈ Rn, ||p|| = 1, and a number ε1 ∈ (0, ε] such
that z = x+ ε1p. In this case

⟨z − z0, z0 − x0⟩ = ⟨x+ ε1p− z0, z0 − x0⟩ =
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= ⟨x− z0, z0 − z0⟩+ ε1⟨p, z0 − x0⟩ ⩽ −ε2 + ε1ε ⩽ 0. (3)

Thus, from (2) and (3) it follows that for each z ∈ X(ε) the inequality

⟨z − z0, z0 − z0⟩ ⩽ 0

is satisfied. This means that the ray with a direction vector y0 = z0 − x0 belongs to the
cone N(X(ε), z0).

Let us prove its uniqueness. Note that z0 is a boundary point not only of the set X(ε),
but it is a boundary point of a closed ball Bε(x0) of radius ε centered at x0. The vector
y0 is also normal to the tangent plane of the ball at the point z0. Therefore, if we assume
the existence of a vector

y1 ∈ N(X(ε), z0), y1 ̸= λy0 ∀λ ⩾ 0,

then it should be normal to set Bε(x0). The obtained contradiction completes the proof
of the theorem. ■

In Figure 1 you can see an example of a rectangle smooth approximation.

Figure 1. The family Xε

Corollary 1. Using this theorem, it is not difficult to show the validity of the following
statements:

• for points x0, z0, from Theorem 1, the next inclusion

N(X(ε), z0) ⊂ N(X,x0)

is true;
• let X ⊂ Rn be a closed convex set. For every ε > 0, the set X(ε) is smooth.
Let X ⊂ Rn be a closed convex set. Consider a set-valued mapping

ψ : X(·) : (0,+∞)→ 2R
n

.
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By using the results presented in the paper by G. Beer [9], it is easy to prove the
following theorem.

Theorem 2.
• The set-valued mapping ψ is Kuratowski continuous.
• Let X ⊂ Rn be a compact convex set. Then ρH(X(ε), X) → 0, if ε → +0, where

ρH(X(ε), X) is the Hausdorff distance.
4. Smooth approximation of convex functions. Let f : Rn → R ∪ {+∞}, fn :

Rn → R ∪ {+∞} be real-valued functions. We say that the sequence {fn} epi-converges
to a function f if for each x ∈ X:

lim inf
n→+∞

fn(xn) ⩾ f(x) for every xn → x,

lim sup
n→+∞

fn(xn) ⩽ f(x) for some xn → x.

A collection Ω of real-valued functions on Rn is called pointwise equicontinuous [9],
if for each y ∈ Rn and ε > 0 there exists δ > 0, depending on ε and y, such that whenever
d(x, y) < δ then |f(x)− f(y)| < ε for all f ∈ Ω.

The following theorem by G. Beer [9] establishes the relationship between the point-
wise convergence of distance functions and the convergence of distance functions of sets
in Rn × R.

Theorem 3 [9]. Let {fn} be a pointwise equicontinuous sequence of real-valued con-
tinuous functions on Rn, and let f : Rn → R be continuous. The following statements are
equivalent:

• whenever {xn} is a sequence in Rn convergent to x, then

lim
n→+∞

fn(xn) = f(x);

• {fn} converges to f uniformly on compact subsets of Rn;
• {fn} converges pointwise to f ;
• {fn} Kuratowski converges to f ;
• {fn} epi-converges to f .
Consider a convex function f : Rn → R and a closed convex set D ⊂ Rn. Denote

X = epif =
{
(x, µ) ∈ Rn × R

∣∣ µ ⩾ f(x), x ∈ D
}
.

Construct families of convex closed sets

X(ε) = X + εB1(0n+1) ⊂ Rn+1, D(ε) = D + εB1(0n) ⊂ Rn, ε > 0,

and a family of convex functions

fε(x) =

{
inf µ, (x, µ) ∈ X(ε),
+∞, at other points.

It is not difficult to see that dom fε = D(ε), and for each fixed ε > 0, the graph of the
function fε is the lower envelope of the corresponding set X(ε).

Fix ε > 0. Let z ∈ D. Consider a family of convex functions {φε(x, z)}

φε(x, z) = f(z) + tε(x, z),
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where

tε(x, z) =

{
−
√
ε2 − ||x− z||2, x ∈ Bε(z),

+∞, at other points.

Here Bε(z) ⊂ Dε. It is obvious that

dom φε(·, z) = Bε(z),
⋃
z∈D

Bε(z) = D(ε).

Denote Hε(z) = epi φε(·, z). Consider also functions

φε(x) = inf
z∈D

φε(x, z)

and its epigraphs Hε = epi φε.
From the constructing of functions fε and φε it is not difficult to prove that the

statements are true [11]:
• for any fixed point x0, there exists a unique point z0 ∈ D for which

φε(x0) = f(z0) + tε(x0, z0);

• Hε = epi φε =
⋃
z∈D

epi φε(·, z) =
⋃
z∈D

Hε(z);

• Hε = X(ε);
• for any fixed ε > 0, the following statement fε(x) = φε(x) holds;
• fε(x) = (f ⊕ tε)(x), where

tε(x) =

{
−
√
ε2 − ||x||2, ||x|| ⩽ ε,
+∞, at other points.

Note the fact that tε is essentially smooth for every fixed positive ε. Consider the
function fε(x) = (f ⊕ tε)(x). The function fε is convex and

f∗ε (v) = f∗(v) + t∗ε(v), v ∈ Rn.

Then the next statements are true [11]:
• for the function fε, the statements

dom fε = dom f1 +Bε(0n), epi fε = epi f1 +Bε(0n+1)

hold, where Bε(0n) = {x ∈ Rn | ||x|| ⩽ ε}, Bε(0n+1) = {x ∈ Rn+1 | ||x|| ⩽ ε};
• the function fε for any fixed ε > 0 is continuously differentiable at each interior

point of D(ε);
• the set epi fε ⊂ Rn × R is smooth for any positive number ε.
As the function tε is essentially smooth, then the function fε is also essentially smooth

[3]. Therefore it is continuously differentiable at any interior point of Dε.
Theorem 4. Let a point x0 ∈ int D(ε). Then there exists a unique point z0 ∈ D for

which
f ′ε(x0) ∈ ∂f(z0),

where f ′ε(x0) is the gradient of the function fε(x0) at x0, ∂f(z0) is the subdifferential of
the function f at z0.
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P r o o f. Take a point x0 ∈ intDε. Then by using Theorem 1 for any point x̄0 =
(x0, fε(x0)), the normal cone N(X(ε), x̄0) to the set X(ε) consists of the ray with the
direction vector

y0 = x̄0 − z̄0 = (x0 − z0, fε(x0)− f(z0)),

where z̄0 = arg minz̄∈X ||z̄ − x̄0|| = [z0, f(x0)], and fε(x0)− f(z0) < 0, that is,

N(X(ε), x̄0) = {y ∈ Rn+1
∣∣ y = λ(x̄0 − z̄0) ∀λ ⩾ 0}.

As the set X is the epigraph of f , then by using one of the properties of the normal cone
to the epigraph of f at z̄0, we have

(f ′ε(x0),−1) ∈ N(X(ε), x̄0) ⊂ N(X, z̄0).

Thus f ′ε(x0) ∈ ∂f(z0). ■
Note some properties of functions conjugate to the functions f and fε. Let f be a

closed proper convex function on Rn. A set

dom ∂f = {x ∈ Rn
∣∣ ∂f(x) ̸= Ø}

and
range ∂f =

⋃
x∈Rn

∂f(x)

are called, respectively, the effective set and the image of ∂f . It is known [3], that

ri(dom f∗) ⊂ range ∂f ⊂ dom f∗.

Since the function fε is the infimal convolution of the functions f and tε, then by
using property (1) we have that at each point v ∈ range ∂fε for every positive ε > 0, the
next equality

f∗ε (x) = f∗(v) + ε
√

1 + ||v||2

holds.
Take v ∈ range ∂fε ⊂ domf∗ε . Then there exists a point x ∈ domfε for which v ∈

∂fε(x), therefore,
fε(x) + f∗ε (v) = ⟨x, v⟩. (4)

Consider the point x̄ = (x, fε(x)). Find

z̄ = arg min
z̃∈X
||z̃ − x̄|| = (z, f(z)),

then v ∈ ∂f(z), x̄ = z̄ + εµ(v)[v,−1], where µ(v) = 1√
1+||v||2

. From the equalities

x = z + εµ(v)v, fε(x) = f(z)− εµ(v) (5)

hold. Thus, if a point x ∈ int (dom f), then the function fε is differentiable at it. Therefore

v = f ′ε(x), µ(v) =
1√

1 + ||f ′ε(x)||2
, x = z + εµ(v)f ′ε(x).

Since v ∈ ∂f(z), then
f(z) + f∗(v) = ⟨z, v⟩.
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From this equality, from equalities (4) and (5) the next formula is true

min
x∈D

f(x) = min
x∈D(ε)

fε(x) + ε.

Theorem 5. Let M∗ be the set of minimizers of the function f on the set D, and M∗
ε

be the set of minimizers of the function fε on the set D(ε). The case when these sets are
empty is not excluded. The following statements are true:

• if the set D is convex compact, then

min
x∈D

f(x) = min
x∈Dε

fε(x) + ε;

• the next equality M∗ =M∗
ε holds;

• if M is not an empty set, then

fε(z
∗) = f(z∗)− ε ∀z∗ ∈M∗.

P r o o f. First, note that if a point x0 ̸∈ D, but x0 ∈ D(ε), then there exists a point
z0 ∈ D for which

fε(x0) = f(z0) + tε(x0, z0) > f(z0)− ε ⩾ fε(z0).

Therefore M∗
ε ⊂ D ⊂ int D(ε).

Assume that the set M∗
ε is not empty and a point z∗ ∈ M∗

ε . Show that this set
belongs to the set M∗. Consider a point z̄ = (z∗, fε(z

∗)) ∈ X(ε). Then there exists a point
x̄ ∈ X, x̄ = (x, f(x)), for which

(z∗ − x, fε(z∗)− f(x)) ∈ N(X(ε), z̄).

If a point z∗ is a minimizer of fε on Dε, then

(z∗ − x, fε(z∗)− f(x)) = ε(0n,−1) ⊂ N(X(ε), z̄∗),

where z̄∗ = [z∗, fε(z
∗)]. Therefore z∗ = x and fε(x) − f(x) = −ε. Hence z∗ ∈ M∗. The

inclusion of M∗
ε ⊂M is proved.

Show the correctness of the inverse inclusion. Let z∗ ∈ M∗. Consider points z̄ =
(z∗, f(z∗)), z̃ = (z∗, fε(z

∗)) and the vector ḡ = z̃ − z̄ = (0n, fε(z
∗) − f(z∗)). By

constructing the set X, we have ||ḡ|| ⩾ ε and

f(z∗)− fε(z∗) ⩾ ε.

Suppose that f(z∗) − fε(z∗) > ε. Then there exists a point x̄ = (x, f(x)), x ∈ D, for
which ||x̄− z̃|| = ε. Hence |f(x)− fε(z∗)| ⩽ ε. From here we have

ε < f(z∗)− fε(z∗) ⩽ f(z∗) + ε− f(x).

Or f(z∗) > f(x). However, this inequality contradicts with the fact that z∗ is a minimizer
of the function f on D. ■

Example 3. Let we have

f(x) = max

{
−2x− 6,−1

2
x− 3, 2x− 8

}
, x ∈ R,
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or

f(x) =

 −2x− 6, x ∈ (−∞,−2),
− 1

2x− 3, x ∈ [−2, 2),
2x− 8, x ∈ [2,+∞).

Consider two variants.
Variant 1. Let the set D be the Euclidean space R. Then the set of minimizers of this

function consists of a single point x∗ = 2 and f(2) = −4. Fix an arbitrary positive ε > 0.
Then

fε(x) =



−2x− 6−
√
5ε, x ∈

(
−∞,−2− 2

√
5ε
5

)
,

−2−
√
ε2 − (x+ 2)2, x ∈

[
−2− 2

√
5ε
5 ,−2−

√
5ε
5

)
,

− 1
2x− 3−

√
5ε
2 , x ∈

[
−2−

√
5ε
5 , 2−

√
5ε
5

)
,

−4−
√
ε2 − (x− 2)2, x ∈

[
2−

√
5ε
5 , 2 + 2

√
5ε
5

)
,

2x− 8−
√
5ε, x ∈

[
2 + 2

√
5ε
5 ,+∞

)
.

The function fε is continuously differentiable on R and

f ′ε(x) =



−2, x ∈
(
−∞,−2− 2

√
5ε
5

)
,

x+2√
ε2−(x+2)2

, x ∈
[
−2− 2

√
5ε
5 ,−2−

√
5ε
5

)
,

− 1
2 , x ∈

[
−2−

√
5ε
5 , 2−

√
5ε
5

)
,

x−2√
ε2−(x−2)2

, x ∈
[
2−

√
5ε
5 , 2 + 2

√
5ε
5

)
,

2, x ∈
[
2 + 2

√
5ε
5 ,+∞

)
.

Hence f ′ε(2) = 0 and fε(2) = −4− ε. We have

f∗(v) =


−2v + 2, v ∈

[
−2,− 1

2

)
,

2v + 4, v ∈
[
− 1

2 , 2
]
,

+∞, at other points.

Variant 2. Consider the case when the set D is the segment [−3, 0] and the functions

f̃(x) = max

{
−2x− 6,−1

2
x− 3

}
, x ∈ [−3, 1] ⊂ R,

f̃(x) =


+∞, x ∈ (−∞,−2),
−2x− 6, x ∈ [−2,− 1

2 ),

− 1
2x− 3, x ∈ [− 1

2 , 0],

+∞, x ∈ (− 1
2 ,+∞).

Then Dε = [−3− ε, ε] (Figure 2) and the function
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f̃ε(x) =



+∞, x ∈ (−∞,−3− ε),

−
√
ε2 − (x+ 3)2, x ∈

[
−3− ε,−3− 2

√
5ε
5

)
,

−2x− 6−
√
5ε, x ∈

[
−3− 2

√
5ε
5 ,−2− 2

√
5ε
5

)
,

−2−
√
ε2 − (x+ 2)2, x ∈

[
−2− 2

√
5ε
5 ,−2−

√
5ε
5

)
,

− 1
2x− 3−

√
5ε
2 , x ∈

[
−2−

√
5ε
5 ,−

√
5ε
4

)
,

−3−
√
ε2 − x2, x ∈

[
−

√
5ε
4 , ε

]
,

+∞, x ∈ (ε,+∞).

The function f̃ε is continuously differentiable for all x ∈ (−3− ε, ε) and f̃ ′ε(0) = 0. As

f̃ε(0) = −3− ε, f̃ε(−3− ε) = 0, fε(ε) = −3,

then
min
x∈Dε

fε(x) = −3− ε.

Figure 2. Family fε(x) (I) and f̃ε(x) (II)
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Гладкие аппроксимации негладких выпуклых функций

Л. Н. Полякова

Санкт-Петербургский государственный университет, Российская Федерация,
199034, Санкт-Петербург, Университетская наб., 7–9

Для цитирования: Polyakova L. N. Smooth approximations of nonsmooth convex functions //
Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Про-
цессы управления. 2022. Т. 18. Вып. 4. С. 535–547.
https://doi.org/10.21638/11701/spbu10.2022.408

Используя операцию инфимальной конволюции, для произвольной негладкой выпуклой
функции строится аппроксимирующее семейство непрерывно дифференцируемых вы-
пуклых функций. Построенное аппроксимирующее семейство гладких выпуклых функ-
ций сходится по Куратовскому к рассматриваемой функции. Если множество определе-
ния данной функции компактно, то такие гладкие выпуклые приближения непрерыв-
ны в метрике Чебышева. Также рассматривается аппроксимация негладкого выпуклого
множества семейством гладких выпуклых множеств.
Ключевые слова: многозначное отображение, полунепрерывное отображение, сопряжен-
ная функция, сходимость по Куратовскому, операция инфимальной конволюции, глад-
кая аппроксимация.
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